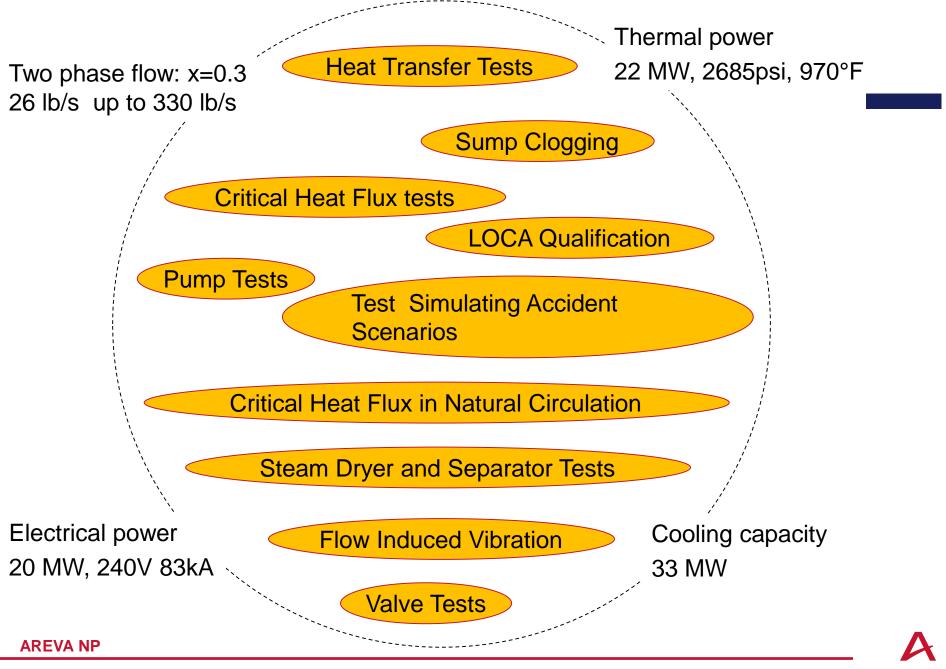


AREVA Technical Center

Scientific Thermal Hydraulic Testing Capabilities


Darryl Gordon Manager, Project Development Government Operations

AREVA NP

AREVA

NSUF-GAIN Nuclear Thermal-Hydraulics Workshop - July 13, 2017 Idaho Falls

ARE

Thermal Hydraulic Platform Accredited Measurement Range & ILAC Acceptance

Measurements	Range		
Temperature	0°C - 1000°C		
Pressure	10 Pa - 40 MPa		
Volume flow rate	0,1 l/h - 1.500 m³/h		
Mass flow rate	01 kg/h - 4.000 kg/s		
Force	1 N - 10.000 kN		
Momentum	up to 50.000 Nm		
Distance	1μm - 10 m		
Velocity	1 mm/s - 100 m/s		
Acceleration	0,5 - 1.000 g		
Current	1 mA - 85.000 A		
Voltage	1 mV - 4 kV		
Electrical power	up to 20 MW		

AREVA NP

Accredited Test Body Under the term of ISO 17025:2005

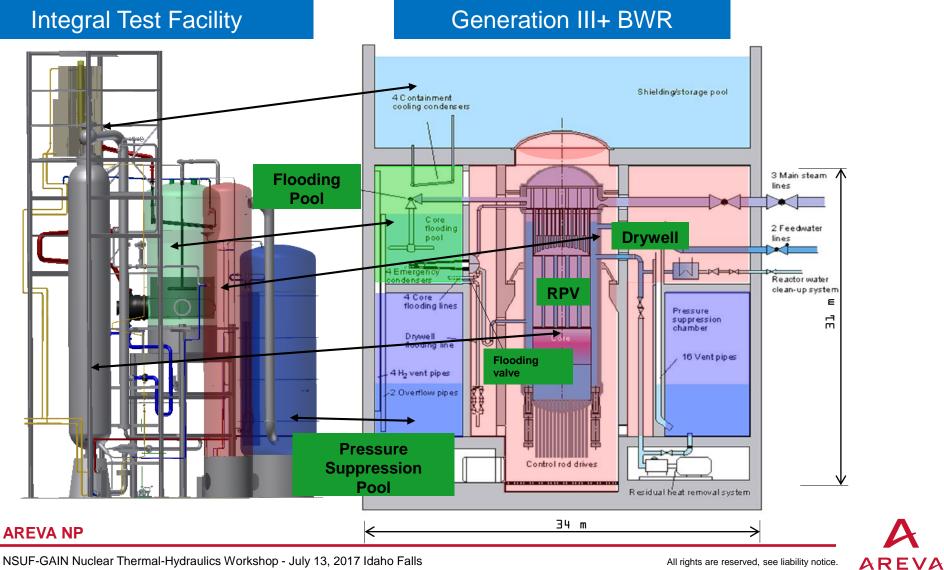
International Laboratory Accreditation Cooperation; world wide cross acceptance e.g.:

- ANSI-ASQ National Accreditation Board (ACLASS), USA
- China National Accreditation Service for Conformity Assessment (CNAS), People's Republic of China
- Comite Francais d'Accreditation (COFRAC), France
- Deutsche Akkreditierungsgesellschaft (DAkkS), Germany
- National Accreditation Board for Testing & Calibration (NABL), India
- Entidad Nacional de Acreditacion (ENAC), Spain
- United Kingdom Accreditation Service (UKAS), United Kingdom

Thermal-Hydraulic Platform Unique in the World

Test Facilities

At our sites, we operate the following test facilities:


- KOPRA Multifunction component test facility (fuel assemblies, CRDMs, valves)
- BENSON high pressure thermal-hydraulic testing of separate effects
- PKL Large scale test facility of a PWR primary loop with secondary side and auxiliary systems
- PETER, BRIAN Fluid dynamic test facilities (PWR and BWR fuel assemblies)
- SUSI sump strainer test facility
- APPEL Pump test loop
- GAP Large valve test facility

- INKA Test facility for integral BWR tests
- KATHY Multifunction thermal-hydraulic test loop
- HYDRAVIB Vibratory validation of lower RPV internals
- ROMÉO & JULIETTE RPV flow distribution in upper and lower plenum
- CALVA Dynamic mechanical testing of components
- MAGALY Vibration behavior of Rod Cluster Control Assembly (RCCA) and Control Rod Guide Assembly (CRGA) for various flow conditions

AREVA NP

BWR Generation III+ Test Loop INKA

► Volumes

- Flooding Pool Vessel: 219 m³
- Wetwell Vessel: 350 m³
- Drywell Vessel: 188 m³
- GAP/RPV: 125 m³
- Shielding/Storage Pool V.: 30 m³

Scaling

AREVA NP

- Heights: 1:1
- Components size 1:1
 - EC and CCC: 1 out of 4
 - Vent pipe: 1 out of 16
- Volumes: 1:24
 - GAP/RPV 1:6,3
 - Shielding/St. Pool V. 1:88* *with additional heat exchanger

Supply: 22 MWth

32 m Containment cooling condenser 24 m 22,65 m Vent pipe 18.15 m **Emergency condenser** 13,65 m Flooding valve 0 m

NSUF-GAIN Nuclear Thermal-Hydraulics Workshop - July 13, 2017 Idaho Falls

AREVA

INKA

Key data

Key Data of Similar Test Loops

Facility	Drywell (m³)	Wetwell (m³)	RPV pressure (bar)	Power Supply (MW)
INKA	420	300	89/160	22
PANDA (CH)	198	234	10	1.5
PUMA (US)	14	18	10.3	0.5
Tiger (JP)	30	-	?	?
THAI (DE)	60	-	14	1.5
APEX (US)	No Containment		32	1

AREVA NP

INKA **Testing capabilities**

Performed Tests (and ongoing)

AREVA R&D-Program (-2013)

Single Component Tests in full scale

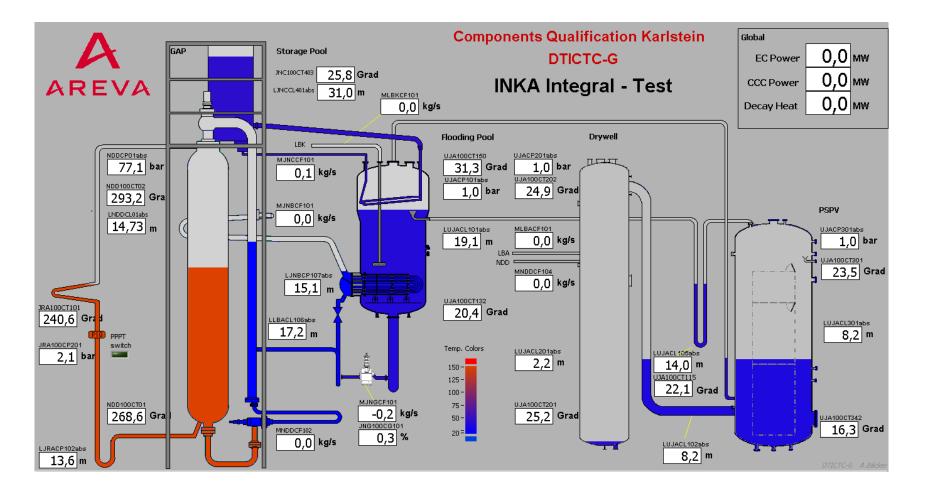
- Emergency Condenser
- Containment Cooling Condenser
- Passive Core Flooding System

EASY-Project (2015-2018) funded by German Government

- Partners: GRS, TUD, THD, RWTH
- Integral Effect Tests
 - Simulation of LOCA (MSLB, FWLB etc.) and non-LOCA (SBO) scenarios
 - Interaction of Passive Systems
 - Code validation (ATHLET, COCOSYS)

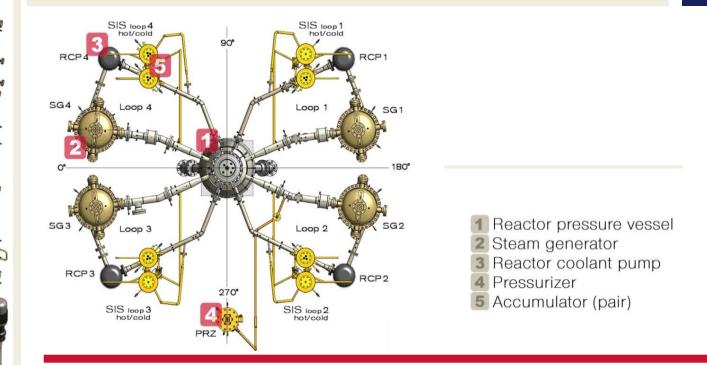
Future

- EASY-ip (application to EURATOM work program)
 - Partners: GRS, CEA, EdF et al.
 - Integral tests on passive systems (Passive components scalable)



- Other applications for INKA
 - Tests with active systems
 - Subjects from Gen-II plants

AREVA NP


Integral Test Feedwater Line Break inside Containment Initial Conditions

AREVA NP

AREVA

Objective

Investigation of PWR T/H behavior under accident condition

Key Features

- 4-loop configuration
- All primary and secondary-side operational and safety systems
- Extensive instrumentation (> 1500 measurement positions)

P.11 © AREVA

PKL Project Test Facility

SGs, top view

More than 200 integral tests since 1977 at AREVA GmbH in Erlangen

- PWR thermo-hydraulic system behaviour under accident conditions
- Effectiveness of measures for accident control
- Data base for code validation
- Demonstration of safety margins
- Training of PWR operating personnel
- Solving of PWR safety concerns
- Operated at AREVA in Erlangen, Germany

PKL control room

Only PWR model with 4 primary-side loops

OECD/PKL Phase 4 Program Topics Overview

i1: Investigations on T/H phenomena related to two-phase flow modelling of two-phase flow phenomena related to LB-LOCA (2 runs)

i2: LOCA-related parameter studies (IB- and SB-LOCA) - 2 options

i2.1: SB-LOCA- Impact of nitrogen on cool-down/heat removali2.2: IB-LOCA, Counterpart Testing with LSTF/ATLAS)i2.2: IB/SB-LOCA- Influence of certain parameters on depressurization

i3: Studies on boron dilution - 2 options

i3.1: Failure of RHRS, confirmation of conclusions on boron dilution for 3-loop plants i3.1: Parameter studies on boron dilution following SB-LOCA

i4: Investigations on cool-down procedures - 2 tests

- i4.1: **Upper head void formation** during cool down under loss of offsite power (complementary to test G6.1)
- i4.2: **ELAP** (extended loss of AC-power): cool-down with feed water from mobile pump after secondary side depressurization
- i5: Concluding investigations on boron precipitation (LB-LOCA) 1 test
- i6 : Open test with topic to be defined during project progress

Access to AREVA NP Facilities

Who to contact:

Darryl Gordon Manager, Project Development (434) 832-5199

Darryl.Gordon@areva.com

Additional information can found at the AREVA Technical Center web page:

http://de.areva.com/EN/customer-3832/thermal-hydraulic-andcomponent-testing.html

AREVA NP