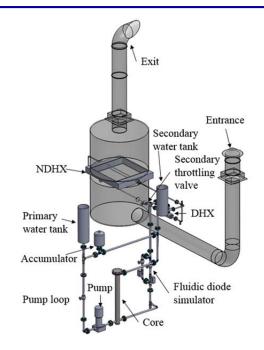
NSUF GAIN Nuclear Thermal-Hydraulics Workshop

UM Thermal Hydraulics Laboratory: Overview and Capabilities (HTGR and MSR)

Xiaodong Sun

Nuclear Engineering and Radiological Sciences, University of Michigan

July 13, 2017


Thermal Hydraulics Lab Capabilities

Molten Salt Reactor (MSR)

Low-Temperature DRACS Test Facility (LTDF)

- Objectives
 - Examine the couplings among the natural circulation/convection loops
 - Provide us with experience beneficial to construction and operation of the high-temperature fluoride salt test facility
- Previous Work
 - DRACS startup tests
 - DRACS steady-state tests
 - Pump trip test without IHX
 - Pump trip test with IHX

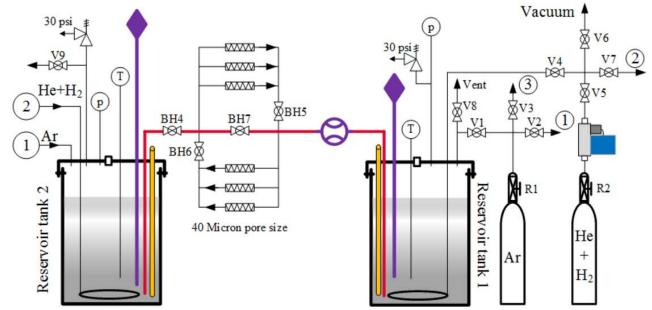
	Primary Water (10 bar)	Secondary Water (1 bar)	Air
T_{hot} (°C)	76.5	65.2	40
T_{cold} (°C)	63.7	34.8	20
ΔT (°C)	12.8	30.4	20
\dot{m} (kg/s)	0.038	0.016	0.102
Loop Height (m)	1.71	0.42	2.1
Pipe ID (cm)	3.7	2.0	35.6

High-Temperature Fluoride Salt Test Facility (HT-FSTF)

Objectives

 Examine the couplings among the natural circulation/convection loops using fluoride salts

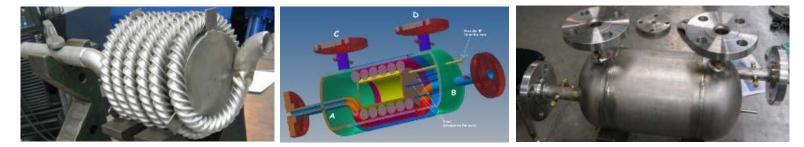
Capabilities

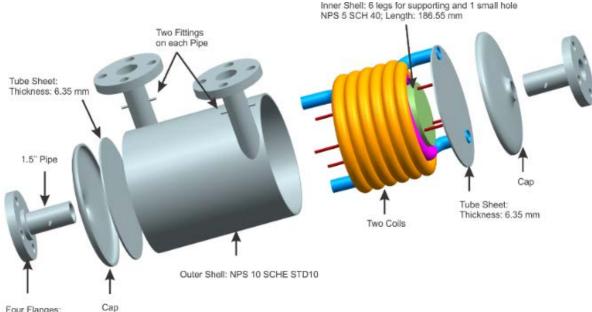

- Current capabilities
 - Coupled natural circulation loops
 - Salt heat transfer and pressure drop
- Potential capabilities
 - Component testing (valve, fluidic diode)
 - Salt corrosion testing

	Primary Fluid (FLiNaK)	Secondary Fluid (KF and ZrF ₄)	Air
T _{hot} (°C)	722	666	110
T _{cold} (°C)	678	590	40
\dot{m} (kg/s)	0.120	0.127	0.142
Loop Height (m)	1.14	1.08	3.43

HT-FSTF (Cont'd)

- Salt Purification and Components Testing
 - Test valves and filters
 - Test ultrasonic flow meter at high-temperature liquid salt conditions (Salt flows from one tank to anther)
 - Test and calibrate level sensors
 - Test differential pressure measurement method in liquid salt conditions


Liquid Fluoride Salt Test Facility


- **Objectives: Heat Exchanger Testing**
- Heat transfer Vent Hydrogen Mass Transfer Vent performance testing 5 psi. Ultrasonic flow meter Primarv FLiNaK Level sensor Hydrogen mass He T Vacuum <--\⊗1 H_2 Thermal mass flow meter Vacuum transfer performance Flow meter and controller Secondary Cantilever Cantilev FLiNaK Pump Check valve \sim Pump testing K) Needle valve 1801 Ball valve ⊣⊳∦ Rejef valve Immersion heater Core power (kW) 40 Test (T) Section 2 Test ection T_{hot} (°C) 700 Primary **FLiNaK** Water 676 T_{cold} (°C) °**--∩** Vacuum Air-water heat Air T_{hot} (°C) 570 exchanger Secondary Core Vent BH1 FLiNaK T_{cold} (°C) 550 1801 Circulator Primary salt loop Reservoir tank **R**2 Secondary salt loop He Air loop 6

Ar

Heat Exchangers for FHRs/MSRs

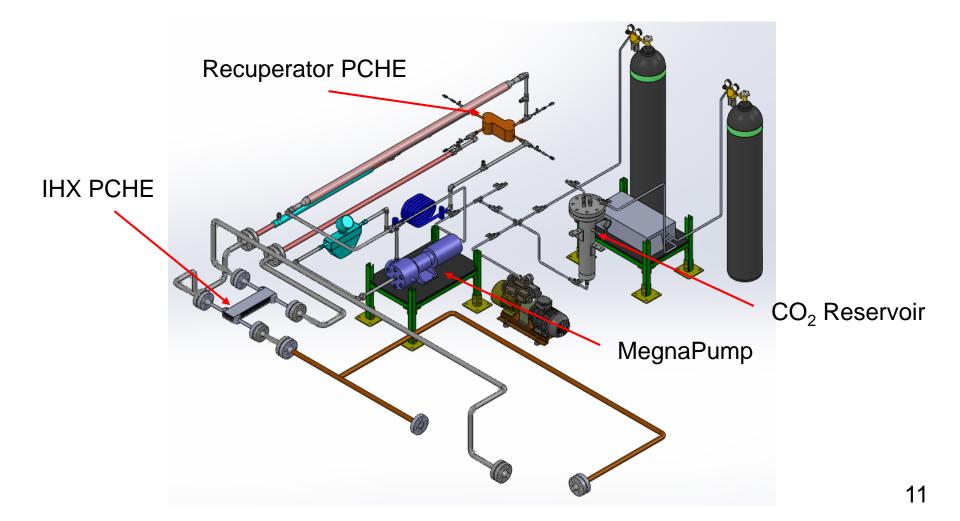
• Helically-Coiled Fluted Tube Heat Exchangers

Thermal Hydraulics Lab Capabilities

High-Temperature Gas-Cooled Reactor (HTGR)

High-Temperature Helium Test Facility

- HTHF Design Temperature & Pressure: 850°C and 3 MPa
- Electric heating power: 46 kW
- Two PCHEs made of Alloy 617 plates installed and tested
- HTHF can be used for testing of heat exchangers, valves, and instrumentation

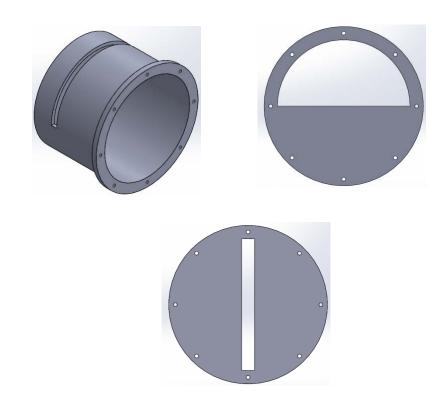


High-Temperature Helium Test Facility (Cont'd)

Balloon No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 T1-T11 P1-P8 V1-V4 BPV1, BPV2 B1, B2 C1-C4 Vac SRV C1 (15)	Name Gas Booster Surge Volume Tank Pressure Reducing Valve Venturi Flow Meter 1 Pre Heater Venturi Flow Meter 2 PCHE 1 PCHE 2 Main Heater Venturi Flow Meter 3 Cooler Bypass 1 Bypass 2 Blind Flange Helium Gas Cylinder Vacuum Pump Thermowells Pressure Taps High Temperature Needle Valves Needle Valve in Bypass Lines Ball Valves at Booster Inlet and Exit Ball Valves in the Charging Line Ball Valve in Vacuum Line Safety Relief Valve
15	10

S-CO₂ Test Loop (STL)

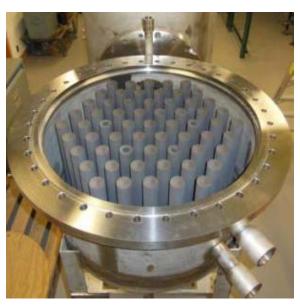
• Temperature and pressure up to 630°C and 16 MPa

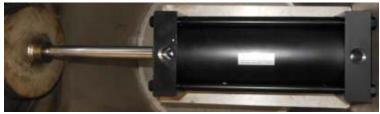


Air-ingress Test Facility

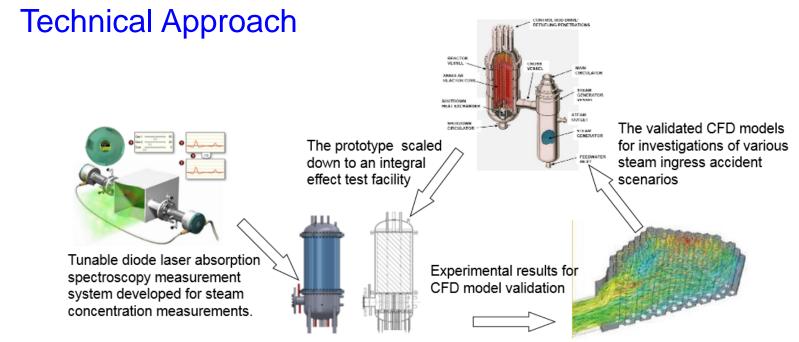
• Research Objectives

- Understand air ingress phenomenon into hot exit plenum following cross vessel break – directly affects graphite oxidation
- Understand how break geometry affects air ingress phenomenology molecular diffusion vs. density-driven countercurrent flow




Air-ingress Test Facility (Cont'd)

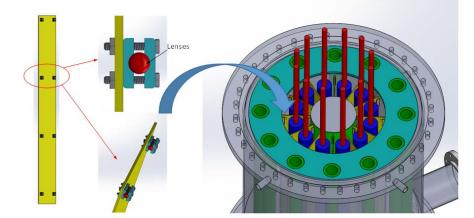
- Main Test Vessel
 - Simulates hot exit plenum and hot duct of cross vessel
 - SS 316 vessel rated up to 0.35 MPa at 540°C
 - Contains 59 IG-110 graphite rods arranged hexagonally
 - Instrumented with 36 TCs, 10 PTs, 5 O₂ Sensors
- Containment Vessel
 - SS 304 vessel rated up to 0.17 MPa at 100°C
 - Break Initiation (Air piston and break cap)
 - 5 TCs, 1 O₂ Sensor

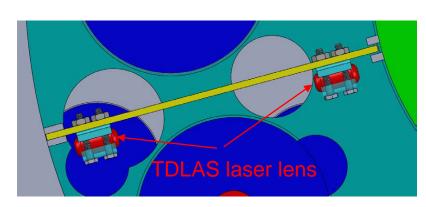


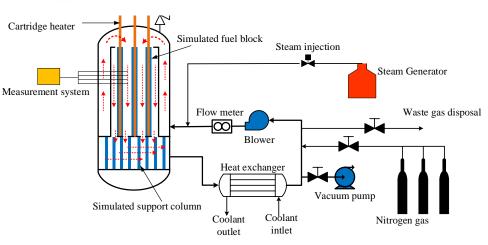
Steam Ingress Accidents in HTGRs

Research Objectives

- Experimentally investigate steam ingress accidents, focusing on both thermal-hydraulic behavior and graphite oxidation
- Develop and validate predictive Computational Fluid Dynamics (CFD) models for the steam ingress phenomena


Technical approach for steam ingress project


Steam Ingress Accidents in HTGRs (Cont'd)


Integral Effect Test Facility Design

TDLAS lens

Installation of TDLAS in core region

Schematic of the integral effect test facility 15