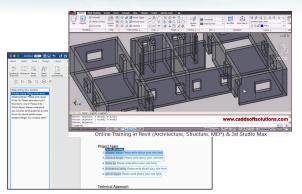
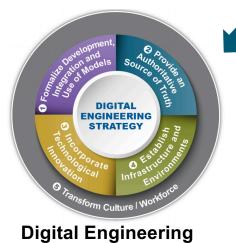
Digital Engineering @ NRIC

Implementation of digital engineering principles applied to micro reactor design and construction


What is Digital Engineering?

Stone Tablet



Paper Blueprint

Information Management

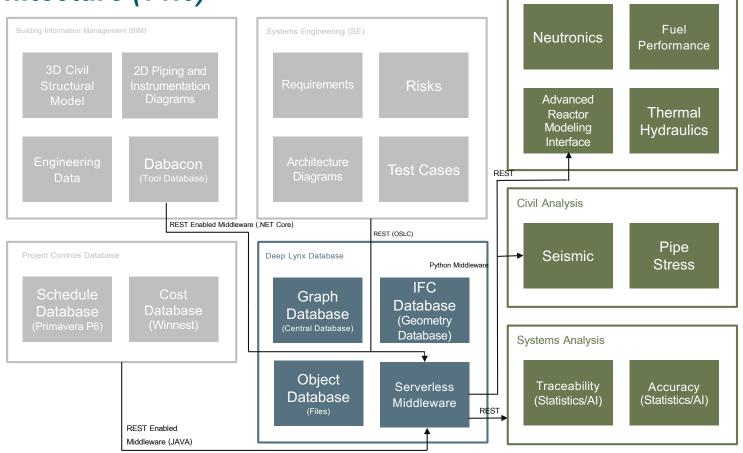
- 1. Use Models MBSE & BIM
- 2. Source Of Truth Central Datawarehouse
- 3. Technological Innovation Lab & University Research

4. Infrastructure and Environment Cloud Computing & HPC5. Transform Culture Training & Cultural Integration

Idaho National Laboratory

Opportunity

- Significant program impacts, for example published impacts at Mortenson Construction demonstrate
 - 600 cumulative day direct schedule reductions
 - 25% productivity increase
 - Use across 416 VDC programs
- **40% improvement** in first-time quality through use of digital twins (Boeing)
- Expected **\$30M** savings at NNSA
- Proven across engineering domains: Construction (Mortenson VDC), Aerospace (Boeing 777), Automotive (Bugatti)


Level 7	automated design optimization	斗 Artificial Intelligence
Level 6	analytics automation	🔆 Advanced Analytics
Level 5	connections across lifecycle	Digital Thread
Level 4	connections within in each domain	Digital Links
Level 3	data storage are centralized	Data Lake
		• Content Management
		O Siloed Program

Idaho National Laboratory

Nuclear Analysis

Example Derivative Solution: Plant Digital Engineering Architecture (v1.0)

- Cloud-based service of industry leading COTS tools
- Automation of design, modeling, & analysis integration
- Visualization of traceability between siloed tools
- Analysis of overall system traceability and accuracy

Work Scope

- Scope
 - This work scope will utilize model-based systems engineering (MBSE) to design traced physical, functional, and requirements models. These models will be developed in a data-first paradigm where the underlying database is the authoritative source of truth which generates visual representations of the data. To develop these models a data model will be developed and infrastructure will be deployed to DOE internal and/or cloud systems.
- Key Personnel
 - Chris Ritter, Chief Architect
 - Peter Suyderhoud, MBSE Architect
 - Jason Kuipers, Senior Software Engineer
 - Nancy Gomez, Infrastructure Lead