

ADVANCED REACTOR MATERIALS DEVELOPMENT ROADMAP

This Advanced Reactor Materials Development Roadmap provides for a planned coordination of materials development and validation programs to directly address gaps in order to support the near term deployment and progress advanced non-light water reactor designs.

Marc Albert, Sr. Technical Leader Advanced Nuclear Technology 704.595.2187 malbert@epri.com

ADVANCED NUCLEAR TECHNOLOGY PROGRAM

Revision 0

EPRI RESOURCES

REACTOR TYPES

OVERVIEW

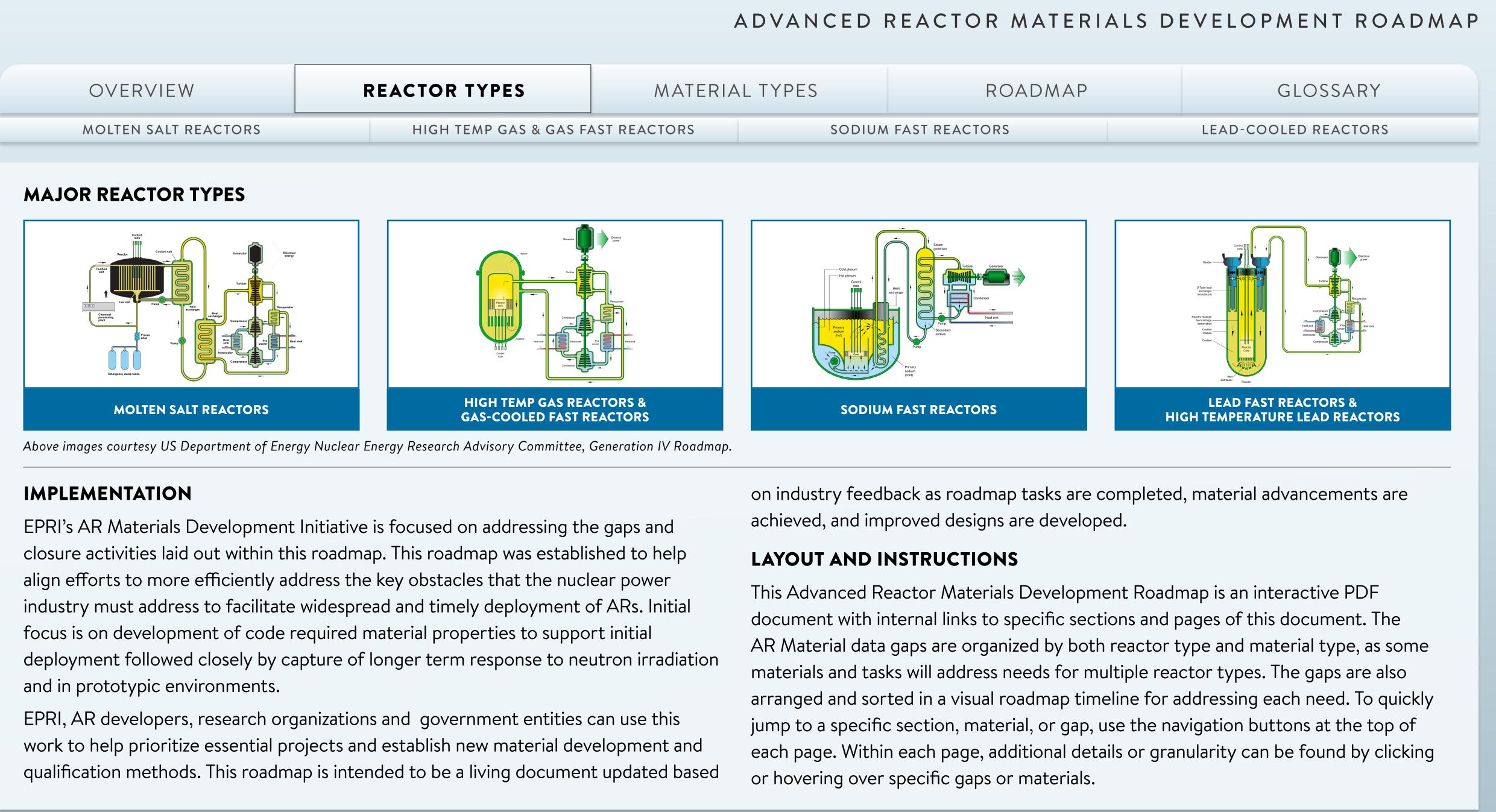
OVERVIEW

Advanced non-light water reactors (ANLWRs or ARs) operate at much higher temperatures than traditional nuclear power plants. Within this new operating regime, design practices now need to account for "time-dependent" behavior in material and component properties and in various coolants. Materials of construction for ARs need to endure mechanical loads and often extreme environmental conditions for prolonged times while withstanding effects of temperature transients, effects of irradiation damage to material properties, and irradiation-induced swelling. To develop this roadmap, EPRI first conducted a series of four AR Materials Gap Analyses, one for each of the major reactor type based on coolant (report numbers and links to free downloads are included below):

- 3002010726: Materials Properties Assessment and Gap Analysis for Molten Salt Reactors | <u>https://www.epri.com/research/products/000000030020107260</u>
- 3002015815: Materials Properties Assessment and Gap Analysis for Very High Temperature Reactors and Gas-Cooled Fast Reactors https://www.epri.com/research/products/000000003002015815

3002016950: Materials Properties Assessment and Gap Analysis for Lead-cooled Fast Reactors | <u>https://www.epri.com/research/products/00000003002016950</u> The four reports identify key material property gaps that must be filled to support AR designs through literature reviews and industry survey on material science related knowledge. Providing a summary table of material gaps for each reactor type, these four crucial reports led to the first revision of this roadmap. It should be noted this roadmap is intended to be a living document; updated and prioritized based on the needs of the nuclear industry as advancements in material development, material science knowledge and data compilation are made.

ADVANCED REACTOR MATERIALS DEVELOPMENT ROADMAP


MATERIAL TYPES

ROADMAP

GLOSSARY

3002016949: Materials Properties Assessment and Gap Analysis for Sodium-Cooled Fast Reactors | <u>https://www.epri.com/research/products/00000003002016949</u>

OVERVIEW	REACTOR TYPES	MATER

MOLTEN SALT REACTORS

HIGH TEMP GAS & GAS FAST REACTORS

MOLTEN SALT REACTORS

Material R&D Gaps

COMPONENT	MATERIAL	NEEDED R&D
Core Support / Structural Materials	316 and Austenitic Alloys	 Proof of resistar Time dependent Demonstration Development ar
	Hastelloy N and variants	 Demonstration of properties Development of
Coolant	Salt	 Development of
Moderator	Graphite	 Development of

Austenitic Stainless Steels

Ferritic-Martensitic & LAS

Nickel-based Alloys

ERIAL TYPES	ROADMAP		GLOSSARY
SODIUM	FAST REACTORS		LEAD-COOLED REACTORS
t properties for ASME code of performance —resistanc	n in properly controlled salt env e Sec III Div 5 qualification ce to EAC (Environmentally As ing (Mo rich) for protection		
	last N variants (Proper underst e Sec III Div 5 qualification	anding of	chemistry -> microstructure ->
f salt chemistry (and impur	rity) control. Demonstration of	Te contro	SI
f long-term properties in sa	alt		

OV	ΕI	RV	/IE	W
$\mathbf{\tilde{\mathbf{v}}}$	-			- • •

REACTOR TYPES

MAT

MOLTEN SALT REACTORS

HIGH TEMP GAS & GAS FAST REACTORS

HIGH TEMP GAS & GAS FAST REACTORS

Material R&D Gaps

COMPONENT	MATERIAL	NEEDED R&D
	316 and Austenitic Alloys	• Code approval o
HIGH TEMP GAS REACTOR	316FR	• Code qualification
Core Support/ Structural Materials	800H	 Summary Docur Support ASME of Develop and quase
HIGH TEMP GAS REACTOR Vessel	Low Alloy Steels (LAS)	• Time dependent
HIGH TEMP GAS REACTOR Moderator	Graphite	 Development of
GAS FAST REACTOR Core support	Ferritic-Martensitics	 Demonstration of Time dependent demonstrate pro
GAS FAST REACTOR Cladding and reflector	Ceramics	• For advanced G

Austenitic Stainless Steels

Ferritic-Martensitic & LAS

Nickel-based Alloys

ERIAL TYPES	R	OADMAP		GLOSSARY
SODIUN	A FAST REACTOR	RS	LEAD	-COOLED REACTORS
of time dependent propert	ies – creep, cre	eep-fatigue		
on properties for ASME co	ode Sec III Div 5	5 for 316FR inclu	uding time depend	dent properties
ment of Properties code extension of propert alify improved weld filler n				
· ·				
and fatigue properties fo	r ASME code S	ec III Div 5		
flong-term properties in r	eactor environi	ment for the spe	ecific type of grap	phite to be employed
of adequate resistance to a properties for ASME cod operties of joints	• •	·	opment of fabrica	ation technologies – and
FR – SiC-SiC, Zr ₃ Si need m	naterials endura	nce data for the	ese materials	
	•		•	
Graphite & C	eramics	Corro	osion	Cladding

C	M	A	Ρ	
			-	
_	_	_	_	
ł				

OVERVIEW

REACTOR TYPES

MAT

MOLTEN SALT REACTORS

HIGH TEMP GAS & GAS FAST REACTORS

SODIUM FAST REACTORS

Material R&D Gaps

COMPONENT	MATERIAL	NEEDED R&D
	316 Stainless Steel	• Extend code pro
Vessel and Core Support Structure	Alloy 709 SS	 Summary Docur Demonstration of Development of
	D9 Stainless Steel	 Development of Development of
Core Support Structure and Cladding	Ferritic-Martensitics	Prove adequacyDevelopment of

Austenitic Stainless Steels

Ferritic-Martensitic & LAS

Nickel-based Alloys

ADVANCED REACTOR MATERIALS DEVELOPMENT ROAD

ERIAL TYPES	ROADMAP		GLOSSARY
SODIUM	FAST REACTORS		LEAD-COOLED REACTORS
operties to include time de	pendent behavior (Creep and	Creep-Fa [.]	tigue)
	per understanding of chemist le Sec III Div 5 qualification	ry -> micr	ostructure -> properties
	/ 5 properties (including time of times under realistic condition	•	• •
of swelling resistance at h f fabrication technology ar	igh fluence Id proof of performance of we	elds	

C	M	A	F)
_		_	_	
				_

OVE	ERVI	ΕW
- · -		

REACTOR TYPES

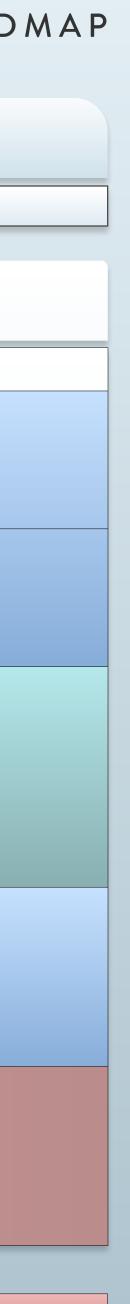
MAT

MOLTEN SALT REACTORS

HIGH TEMP GAS & GAS FAST REACTORS

LEAD-COOLED REACTORS

Material R&D Gaps


COMPONENT	MATERIAL	NEEDED R&D
LEAD FAST REACTOR	316	 (code qualified a Need corrosion
Structural Materials/ Vessel	Type 15-15Ti stainless	Verification of svDevelopment of
LEAD FAST REACTOR Near core structures and cladding	Ferritic-Martensitics	 Demonstration of Time dependent Demonstration of Development of
HIGH TEMP LEAD REACTOR Structural Materials/ Vessel	Alumina Forming Austenitic Stainless Steels	 Demonstration of Demonstration of Development of
HIGH TEMP LEAD REACTOR Cladding	SiC-SiC	 Development of Demonstration of Development of

Austenitic Stainless Steels

Ferritic-Martensitic & LAS

Nickel-based Alloys

ERIAL TYPES	ROADMAP	GLOSSARY		
SODIUM	FAST REACTORS		LEAD-COOLED REACTORS	
already) but need creep and data/demonstration of res	d creep-fatigue data to be add istance to lead corrosion	ed into co	de.	
welling resistance f code properties for 15-15 ⁻				
• •	e Sec III Div 5. (including demo sion/development of corrosion	•	properties of joints)	
•	sion rradiation/swelling at expected alumina forming austenitic sta	• •		
f SiC-SiC structures of resistance to lead corros f properties and support to				

OVERVIEW

OVERVIEW		REACTOR TYP	DEC		AL TYPES		ROADMAP	GLOSSARY		
		REACIÓR I I	- 23	MAIERIA	AL TIPES		ROADMAP	GLOSSART		
AUSTENITIC STAINLESS STEELS	FERRITI	IC-MARTENSITIC & LAS	NICKEL	-BASED ALLOYS	GRAPHITE & CI	ERAMICS	CORROSION	CLADDING		
AUSTENITIC STAINLESS STEELS Material R&D Gaps										
MATERIAL		NEEDED R&D								
316H SS			 Extend BPV-III Div 5 Code properties to include time dependent behavior (Creep and Creep-fatigue) Development and demonstration of cladding (Mo rich) for protection 							
316FR SS		 Code qualification properties for ASME code Sec III Div 5 for 316FR including time dependent properties Demonstration of resistance to lead corrosion 								
Type 15-15Ti SS		 Verification of swelling resistance Development of code properties for 15-15Ti material design 								
Alloy 709 SS		 Demonstration of radiation tolerance (Proper understanding of chemistry -> microstructure -> properties Development of properties for ASME Code Sec III Div 5 qualification 								
Alumina Forming SS		 Demonstration of adequate resistance to irradiation/swelling at expected high dpa Development of processing and joining of alumina forming austenitic stainless steels 								
D9 Stainless Steel		 Development of for Development of sw 			-	• •	·			
CF8C-Plus		 Development of pro- Demonstration of r 	•		•	y -> microst	ructure -> properties			

0	M	A	Ρ
			ī

OVERVIEW

REACTOR TYPES

MAT

AUSTENITIC STAINLESS STEELS

FERRITIC-MARTENSITIC & LAS

NICKEL-BASED ALLOY

FERRITIC-MARTENSITIC & LOW ALLOYS STEELS | Material R&D Gaps

MATERIAL	NEEDED R&D
Ferritic-Martensitic9Cr	 Demonstration of adequate resistance to swelling Time dependent properties for ASME Code Second Development of fabrication and effective joining
Ferritic-Marensitic12Cr	 Demonstration of adequate resistance to swelling Time dependent properties for ASME Code Sec Development of fabrication and effective joining
Ferritic-Martensitic	 Validation of commercial reliability – properties Responds to fabrication processes – welding pro
Low Alloys Steels	• Time dependent and fatigue properties for ASA

ERIAL TYPES	RO.	ADMAP	GLOSSARY
S GRAPHITE & CE	RAMICS	CORROSION	CLADDING
ling at high fluence range			
ec III Div 5			
ng methods			
ling at high fluence range			
ec III Div 5			
ng methods			
es sensitivity to heat treatm	ent / local micros	tructures	
ractices			
ME code Sec III Div 5			

C	M	A	Ρ
			-
			_

			ADVANCED	REACTO	R MATERIALS DE	VELOPMENT ROADMAP
OVERVIEW	REACTOR TY	PES MATERIAL TYPES		L TYPES ROADMAP		GLOSSARY
AUSTENITIC STAINLESS STEELS	FERRITIC-MARTENSITIC & LAS	NICKEL-BASED ALLOYS	GRAPHITE & C	ERAMICS	CORROSION	CLADDING
NICKEL-BASED ALLOYS Material R&D Gaps						
MATERIAL NEEDED R&D Hastelloy N • Demonstration of radiation tolerance of Hastelloy N variants (Proper understanding of chemistry -> microstructure -> properties • Development of properties for ASME Code Sec III Div 5 qualification						
617 • Summary Document of Properties						
 800H Support ASME code extension of properties Development & qualification of improved weld filler metal(s) 						

		4	ADVANCED	REACTOR	R MATERIALS DE	EVELOPMENT ROADMAP							
OVERVIEW	REACTOR TYPES	ES MATERIAL TYPES		MATERIAL TYPES		PES MATERIAL TYPES		CTOR TYPES MATERIAL TYPES		REACTOR TYPES MATERIAL TYPES RO/		ROADMAP	GLOSSARY
AUSTENITIC STAINLESS STEELS FERR	RITIC-MARTENSITIC & LAS	-BASED ALLOYS	GRAPHITE & CE	RAMICS	CORROSION	CLADDING							
NICKEL-BASED ALLOYS Material R&D Gaps													
MATERIAL	NEEDED R&D												
Hastelloy N		 Demonstration of radiation tolerance of Hastelloy N variants (Proper understanding of chemistry -> microstructure -> properties Development of properties for ASME Code Sec III Div 5 qualification 											
617 • Summary Document of Properties													
800H		 Support ASME code extension of properties Development & qualification of improved weld filler metal(s) 											

				ADVANCED F	REACTOR	MATERIALS DEV	ELOPMENT ROADMAP
OVERVIEW	REACTOR TYP	PES	MATERIA	AL TYPES	R	OADMAP	GLOSSARY
AUSTENITIC STAINLESS STEELS	FERRITIC-MARTENSITIC & LAS	NICKEL-B	BASED ALLOYS	GRAPHITE & CE	RAMICS	CORROSION	CLADDING
GRAPHITE & CERAMICS	Material R&D Gaps NEEDED R&D						
Graphite • Development of long-term properties in salt, etc. for the specific type of graphite to be employed • Qualification process – standard graphite doesn't exist; vendor/manufacturer specific qualification							
Ceramics • For advanced GFR – SiC-SiC, Zr ₃ Si need materials endurance data							

				ADVANCED	REACTO	R MATERIALS DE	EVELOPMENT ROADMAP
OVERVIEW	REACTOR TYP	PES	MATERIA	AL TYPES		ROADMAP	GLOSSARY
AUSTENITIC STAINLESS STEELS	FERRITIC-MARTENSITIC & LAS	NICKEL	-BASED ALLOYS	GRAPHITE & CE	ERAMICS	CORROSION	CLADDING
GRAPHITE & CERAMICS	Material R&D Gaps						
MATERIAL	NEEDED R&D						
 Graphite Development of long-term properties in salt, etc. for the specific type of graphite to be employed Qualification process – standard graphite doesn't exist; vendor/manufacturer specific qualification 							
Ceramics • For advanced GFR – SiC-SiC, Zr₃Si need materials endurance data							

CORROSION

	ADVANCED REACTOR MATERIALS DEVELOPMENT ROADMA												
OVERVIEW	REACTOR TYPES	MATERIA	L TYPES	ROA	ADMAP	GLOSSARY							
AUSTENITIC STAINLESS STEELS FERRI	TIC-MARTENSITIC & LAS NICKEL	-BASED ALLOYS	GRAPHITE & CE	RAMICS	CORROSION	CLADDING							
CORROSION Material R&D Gaps													
MATERIAL NEEDER&D													
316FR	- Demonstration of resistance to lead corrosion												
316H	 Proof of resistance to long time corrosion in properly controlled salt environment Demonstration of performance (resistance to EAC) in salt under loading 												
Alumina Forming Austenitic Stainless Steels	• Demonstration of resistance to	Lead corrosion											
Ferritic-Martensitics9Cr	• Demonstration of resistance to	Lead corrosion/devel	lopment of corrosior	data									
Ferritic-Martensitics12Cr	• Demonstration of resistance to	Lead corrosion/devel	lopment of corrosior	data									
Salt	• Development of salt chemistry (and impurity) contro	ol. Demonstration of	Te control									
Graphite	Graphite • Development of long-time properties in salt, etc.												
SiC-SiC	• Demonstration of resistance to	ead corrosion											

				7							
OVERVIEW	IEW REACTOR TYPES MATERIAL TYPES ROADMAP GLOSSA										
AUSTENITIC STAINLESS STEELS	NLESS STEELS FERRITIC-MARTENSITIC & LAS NICKEL-BASED ALLOYS GRAPHITE & CERAMICS CORROSION CLAD										
CLADDING Material R	R&D Gaps										
MATERIAL	MATERIAL NEEDED R&D										
	Development of Sic	C-SiC structures									
SiC-SiC	Demonstration of r	resistance to lead corrosion									
	Development of pre-	operties and support to code qu	ualification								
Low Alloy Steel	Molybdenum Applie	cation methods									

OVERVIEW	REACTOR TYPE	ES MATERIA	AL TYPES	RC	DADMAP	GLOSSARY			
AUSTENITIC STAINLESS STEELS	FERRITIC-MARTENSITIC & LAS	TENSITIC & LAS NICKEL-BASED ALLOYS GRAPHITE & CERAMICS CORROSION							
CLADDING Material R	&D Gaps								
MATERIAL	NEEDED R&D								
SiC-SiC • Development of SiC-SiC structures • Demonstration of resistance to lead corrosion • Development of properties and support to code qualification									
Low Alloy Steel • Molybdenum Application methods									

OVERV	OVERVIEW REACTOR TYPES		PES	MATERIAL TYPES				ROADMAP	GLO	GLOSSARY	
ROADMAP OVERVIEW	AUSTENITIC STAINLESS ST	ELS FERRITIC-MARTENSITIC & LAS	NICKEL-BASED	ALLOYS	GRAPHITE & CERAMICS	со	RROSION	CLADDING	DISSIMILAR METAL WELD	EXPLORATORY AI	

ROADMAP | Overview

TECHNICAL TOPIC	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Austentic Stainless Steels										
316H				_						
316FR										
Alloy 709										
D9 Stainless Steel										
CF8C-Plus										
Ferritic-Martensitic and Low Alloy Steels										
Low Alloy Steel										
Ferritic-Martensitic9Cr										
Ferritic-Martensitic12Cr										
Nickel-Based Alloys										
800H, 617, Hastelloy N										
Hastelloy N										
Graphite										
Corrosion Properties										
Austentic Stainless Steels										4
Development of Testing Approaches for Advanced Reactor Environments										
Dissimilar Metal Weld Joints										
Gr 91 to SS (316H, 709)										
800H to Gr 22 709 to Ferritic Steels										
Cladding Moly / Tungsten Cladding										
Moly / Tungsten Cladding Hastelloy Cladding on 316H SS										
Exploratory Alloys										

Extend Code Properties

Mechanical / Code Properties

Corrosion Properties

ADVANCED REACTOR MATERIALS DEVELOPMENT ROAD

Irradiation Properties

Near-Term Data Capture

Other

C	M	A	Ρ
AL	LOY	Ϋ́S	
			_
	-	-	

OVERVIEW	OVERVIEW REACTOR TYPES		PES	MATERIAL TYPES				ROADMAP	GLC	GLOSSARY	
ROADMAP OVERVIEW AUST	TENITIC STAINLESS STEELS	FERRITIC-MARTENSITIC & LAS	NICKEL-BASED	ALLOYS	GRAPHITE & CERAMICS	со	RROSION	CLADDING	DISSIMILAR METAL WELD	EXPLORATORY AL	

ROADMAP | Austenitic Stainless Steels

TECHNICAL TOPIC	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
316H SS	Extend BPV-III D properties to inc dependent behav	lude time								
		Corrosion behavio	or in salts							
316FR			Code qualification Div 5 for 316FR in	n properties for AS ncluding time depe	ME code Sec III ndent properties					
Alloy 709	Code qualificatio III Div 5 for 709 i	n properties for AS ncluding time depe	ME code Sec 😥 ndent properties							
			Evaluate resistanc	ce to irradiation/swe	elling at high dpa fo	or 709				
D9 Stainless Steel				Code qualification Div 5 for D9 inclu	n properties for AS Iding time depende	ME code Sec III ent propertie				
						Evaluate resistand	ce to irradiation/sw	elling at high dpa fo	r D9 SS	
CF8C-Plus	Code qualificatio Div 5 for CF8C-F time dependent	n properties for AS Plus cast & wrought properties	ME code Sec III forms including							
			Corrosion behavi	or of CF8C-Plus	Evaluate resistance	ce to irradiation/sw	elling at high dpa fo	or CF8C-Plus		
in Progress										

Extend Code Properties

Mechanical / Code Properties

Corrosion Properties

ADVANCED REACTOR MATERIALS DEVELOPMENT ROAD

Near-Term Data Capture

ΟΜΑΡ	
ALLOYS	

OVERV	OVERVIEW REACTOR TYPES		PES	MATERIAL TYPES		ROADMAP		GLOSSARY	
ROADMAP OVERVIEW	AUSTENITIC STAINLESS STEELS	S FERRITIC-MARTENSITIC & LAS	NICKEL-BASED ALLOYS	GRAPHITE & CERAMICS	CORRC	SION CLADDIN	G DI	ISSIMILAR METAL WELD	EXPLORATORY AL

ROADMAP | Ferritic-Martensitic and Low Alloy Steels

TECHNICAL TOPIC	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Low Alloy Steel		properties to dependent b	III Div 5. Code include time ehavior (creep and e)Grade 22 & 508							
Ferritic-Martensitic9Cr				Code qualifi III Div 5 for properties	cation properties for AS F/M-9Cr including time	SME code Sec dependent				
						Evaluate resistance to irradiation/swelling at high dpa (9Cr and 12Cr)				
Ferritic-Martensitic12Cr						Code qualificatio III Div 5 for F/M- properties	on properties for AS 12Cr including time	ME code Sec dependent	Proof-of-Perforn	nance of W
						Evaluate resistan	ce to irradiation/sw	elling at high dpa ((9Cr and 12Cr)	

Extend Code Properties

Mechanical / Code Properties

Corrosion Properties

ΟΜΑΡ	
ALLOYS	
Welds	

OVERV	OVERVIEW REACTOR TYPES		PES	MATERIAL TYPES			ROADMAP	GLC	OSSARY
ROADMAP OVERVIEW	AUSTENITIC STAINLESS STEE	LS FERRITIC-MARTENSITIC & LAS	NICKEL-BASED ALLOYS	GRAPHITE & CERAMICS	CO	RROSION	CLADDING	DISSIMILAR METAL WELD	EXPLORATORY AL

ROADMAP | Nickel-Based Alloys

TECHNICAL TOPIC	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
800H, 617, Hastelloy N	Summary Document for 800H, 617, 709SS, and Hastalloy N	Support ASME Co	ode Data for 617 ar	nd 800H							
800H	Develop and qua	velop and qualify improved weld filler metal(s)									
Hastelloy N		Code qualification Div 5 for Hastello dependent prope	n properties for AS y N (or derivants) i rties	ME code Sec III including time							
		Corrosion Behavi Molten salt	or of Hast N in	Evaluate resistanc	ce to irradiation/sw	velling at high dpa fo	or Hastalloy N				

Extend Code Properties

Mechanical / Code Properties

Corrosion Properties

ΟΜΑΡ	
ALLOYS	

OVERV	IEW	REACTOR TYPES		MATERIAL TYPES				ROADMAP	GLC	SSARY
ROADMAP OVERVIEW	AUSTENITIC STAINLESS STEELS	FERRITIC-MARTENSITIC & LAS	NICKEL-BASED AL	LOYS	GRAPHITE & CERAMICS	со	RROSION	CLADDING	DISSIMILAR METAL WELD	EXPLORATORY AL

ROADMAP | Graphite & Ceramics

TECHNICAL TOPIC	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	
	Evaluate UK Gra	phite Experience	Evaluate new Gra	phite alloys & mov	e into ASME Code		Evaluate SiC-SiC structures				
Graphite & Ceramics		Technical Basis an Qualification of C		Topical Report o	n Graphite						

C	M	\ A	۹ F)
Al	.LO	YS		ĺ
				_

OVERV	IEW	REACTOR TYPES		MATERIAL TYPES			ROADMAP	GLC	SSARY
ROADMAP OVERVIEW	AUSTENITIC STAINLESS STEEL	S FERRITIC-MARTENSITIC & LAS	NICKEL-BASED ALLO	OYS GRAPHITE & CERAMICS	CORI	ROSION	CLADDING	DISSIMILAR METAL WELD	EXPLORATORY AL

ROADMAP | Corrosion Properties

TECHNICAL TOPIC	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030				
Austentic Stainless Steels	ustentic Stainless Steels Molten salt				nd in Prioritize resistance of Austenitic SS in Lead Environment				Behavior of Austenitic Stainless and in				nt	
Development of Testing Approaches for Advanced Reactor Environments	Participation in D Vehicle	OOE VTR Test	Follow on Materia	als Selection and (C	Corrosion + Mechan	ical effects)								

Extend Code Properties

Mechanical / Code Properties

Corrosion Properties

OVERVIEW	RVIEW REACTOR TYPES		PES		MATERIAL TYPES			ROADMAP	GLO	GLOSSARY	
ROADMAP OVERVIEW AUSTENIT	STAINLESS STEELS	5 FERRITIC-MARTENSITIC & LAS	NICKEL-BASED	ALLOYS	GRAPHITE & CERAMICS	со	RROSION	CLADDING	DISSIMILAR METAL WELD	EXPLORATORY AL	

ROADMAP | Cladding


TECHNICAL TOPIC	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Moly Cladding	Development and (Mo rich on LAS	d demonstration of and 316H SS)	cladding 😥							
Hastelloy Cladding on 316H SS		Development and Cladding on 316H	d demonstration of H SS	Hastelloy						

Extend Code Properties

Mechanical / Code Properties

Corrosion Properties

OVERVIEW	OVERVIEW REACTOR TYPES		PES		MATERIAL TYPES			ROADMAP		GLOSSARY	
ROADMAP OVERVIEW AUSTEN	ITIC STAINLESS STEELS	FERRITIC-MARTENSITIC & LAS	NICKEL-BASED	ALLOYS	GRAPHITE & CERAMICS	CO	RROSION	CLADDING	DIS	SSIMILAR METAL WELD	EXPLORATORY AL

ROADMAP | Dissimilar Metal Weld Joints

TECHNICAL TOPIC	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Gr 91 to SS (316H, 709)		Mechanical properties, including time dependent behavior (creep and creep-fatigue)		Corrosion Resistence in AR Environments		Evaluate resistance to irradiation/swelling at high dpa				
800H to Gr 22		Mechanical properties, including time dependent behavior (creep and creep-fatigue)		Corrosion Resistence in AR Environments		Evaluate resistance to irradiation/swelling at high dpa				
709 to Ferritic Steels		Mechanical properties, including tim behavior (creep and creep-fatigue)		ne dependent	Corrosion Resist Environments	ence in AR	Evaluate resistan	ce to irradiation/sw	elling at hig	

OVERVIEW REACTOR TYPES		PES	MATERIAL TYPES				ROADMAP	GLC	GLOSSARY	
ROADMAP OVERVIEW	AUSTENITIC STAINLESS STEE	ELS FERRITIC-MARTENSITIC & LAS	NICKEL-BASED	ALLOYS	GRAPHITE & CERAMICS	со	RROSION	CLADDING	DISSIMILAR METAL WELD	EXPLORATORY AL

ROADMAP | Exploratory Alloys

TECHNICAL TOPIC	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Exploratory Alloys						Prioritize resistar	nce of Exploratory	Alloys in various env	vironments	

C	M	A	Ρ
Â	LLOY	′S	
	_		

BPV-III Div. 5

ASME Boiler & Pressure Vessel Code Section III - Division 5, which provides design, construction, certification, and quality assurance rules for the construction of vessels piping, pumps, valves, supports, core support structures and nonmetallic component for use in high temperature reactor systems and their supporting systems.

dpa

Displacements per atom - a damage-based exposure unit

EAC

Environmentally assisted cracking

FERIA	LTYPES	ROADMAP	GLOSSARY
	F/M		
	Ferritic-martens	itic steels	
els, nts	Mo or Moly		
	Molybdenum		
	VTR		
	Versatile Test Re	eactor	

© 2021 Electric Power Research Institute (EPRI), Inc. All rights reserved. Electric Power Research Institute and EPRI are registered marks of the Electric Power Research Institute, Inc. in the U.S. and worldwide.

3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 • USA 800.313.3774 • 650.855.2121 • askepri@epri.com • www.epri.com

The Electric Power Research Institute, Inc (EPRI, www.epri.com) conducts research and development relating to the generation, delivery and use of electricity for the benefit of the public. An independent, nonprofit organization, EPRI brings together its scientists and engineers as well as experts from academia and industry to help address challenges in electricity, including reliability, efficiency, affordability, health, safety and the environment. EPRI also provides technology, policy and economic analyses to drive longrange research and development planning, and supports research in emerging technologies. EPRI members represent 90% of the electricity generated and delivered in the United States with international participation extending to nearly 40 countries. EPRI's principal offices and laboratories are located in Palo Alto, Calif.; Charlotte, N.C.; Knoxville, Tenn.; Dallas, Texas; Lenox, Mass.; and Washington, D.C.

Together...Shaping the Future of Energy™

3002022979

Electric Power Research Institute

