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Summary

This work is aimed at providing thermophysical properties of molten NaCl-PuCls-AmCls, which is
highly relevant to molten salt reactors. First, ab initio molecular dynamics (AIMD) simulations were
conducted to generate high-fidelity reference datasets, on which a machine learning potential was
trained. This potential, designed to preserve AIMD-level accuracy while allowing for extensive
sampling, was then used in molecular dynamics simulations to calculate various thermophysical
properties of the system. Specifically, the density, thermal expansion coefficient, heat capacity,
viscosity, and thermal conductivity were evaluated. Moreover, temperature-dependent
relationships for the density, thermal expansion coefficient, and viscosity were established. In

addition to thermophysical calculations, structural properties of the mixture were also analyzed.
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1.0 Introduction

In molten salt reactors (MSRs), minor actinides are closely related to advanced fuel cycles,
contributing to both energy production and long-term waste reduction. Americium trichloride
(AmCls), in particular, is highly relevant to chloride-based MSR systems. Significant progress has
been made in advancing the fundamental understanding of AmCl; through multiple research
avenues. At the molecular level, electronic structure theory has been used to investigate its gas-
phase complexes and solid-state properties, providing insights into bonding, electronic, and
structural behavior (Vetere et al. 2004; Li et al. 2023). Experimentally, the synthesis of AmCl; has
received increasing attention, with several alternative strategies being employed (Hayashi et al.
2008; Kersten et al. 2022; Chevreux et al. 2024). In parallel, the electrochemical behavior of
AmCl;-bearing molten salts (MSs) has been investigated (Filatov et al. 2023; Serp et al. 2006),
highlighting its potential role in actinide separation, redox control, and MSR applications. All
together, these studies underscore the importance of AmCl; across theory, synthesis, and applied
electrochemistry, while also pointing to the need for further investigation of its thermophysical
properties in technologically relevant environments. Thus far, the eutectic composition of the
binary NaCI-AmCls; system has been predicted to at 40-45 mol% AmCls. (Toni Y Karlsson and
Pinto 2024) Very limited thermophysical property data for AmCl;-based MSs are currently
available in the literature. The lack of fundamental data will pose barriers to reactor safety
assessments and fuel cycle optimization. Addressing this gap is essential for enabling the reliable
deployment of chloride-based MSR technologies.

In this work, by leveraging recent advances in machine learning interatomic potentials (MLIPs),
we investigated key thermophysical properties of a NaCl-PuCls-AmCls ternary MS with
approximately 31 mol% PuCls and 14 mol% AmCIs, including the liquid density, thermal
expansion, heat capacity, viscosity, and thermal conductivity. The use of machine learning-based
potentials allows for accurate, large-scale molecular dynamics simulations at a fraction of the
computational cost of traditional ab initio methods, thereby enabling reliable predictions of
temperature-dependent trends. This approach not only provides quantitative estimates of
fundamental properties but also helps gain new insights into the underlying atomic-scale

mechanisms governing thermal, transport and structural behavior in complex molten systems.

Introduction 1
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2.0 Methods

As demonstrated in our previous works as well as in the literature, MLIPs can significantly
accelerate atomistic modeling of MS systems (Nguyen et al. 2023; Nguyen et al. 2025; Xu et al.
2023). Studies of actinide-bearing MSs stand to benefit substantially from the use of MLIPs. High-
accuracy methods based on electronic structure theory, such as ab initio molecular dynamics,
provide critical insight but are computationally prohibitive for the large-scale simulations required
to capture transport properties complex liquids. MLIPs, by contrast, can reproduce ab initio
accuracy at a fraction of the computational cost, enabling simulations that are both extensive and
predictive, making them especially valuable for actinide-bearing systems, where experimental
data are scarce and direct measurements are often limited.

To create a MLIP for the NaCl-PuCls-AmCls system, the following workflow was employed. We
began by conducting AIMD simulations to generate reference datasets, including atomic
coordinates, energies, and forces, for the system. These datasets were then used to train a MLIP
capable of reproducing the accuracy of AIMD. Finally, the trained potential was applied in large-
scale molecular dynamics simulations, enabling the efficient calculation of key thermophysical

properties of the mixture.

2.1 Ab initio molecular dynamics

AIMD simulations were carried out using CP2K (Kiihne et al. 2020). The energy was calculated
with spin-polarized revPBE-vdW (Zhang and Yang 1998; Dion et al. 2004) density functional
calculations. The Gaussian and Plane-wave (GPW) hybrid basis set scheme (Lippert, Hutter,
and Parrinello 1997) was employed, with the double-zeta valence polarized (DZVP) (Doudin et
al. 2019; Lu et al. 2021) Gaussian basis sets and a plane wave cutoff of 600 Ry. The GTH
pseudopotentials (Lu et al. 2021; Goedecker, Teter, and Hutter 1996) were used with the number
of valence electrons being 1 for Na, 16 (Pu), 17 (Am) and 7 (CI). The accuracy of this density
functional theory (DFT) approach is demonstrated below for solid state systems. The initial
structure and density of the system at each temperature were prepared using molecular dynamics
based on the polarized ionic model (Salanne and Madden 2011). AIMD simulations were then
carried out with isothermal-isobaric ensemble (NPT) in which the pressure (1 bar) and
temperature were controlled with the Nose-Hoover chain barostat/thermostat (Martyna, Klein, and

Tuckerman 1992). A 2-fs time step was used.

Methods 2
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2.2 Machine learning interatomic potentials

In this work we employed the DeepMD potential model (Zeng et al. 2023) implemented in the
DeePMD-kit (Zeng et al. 2023) to train MLIPs. In this approach, the energy of the system is

E= ZiEi = ZN(DL-(RL-»

where E; is the local atomic energy determined by atom i/ and its neighbors within a cutoff R, the

given by

descriptor D; is the feature matrix encoding the surrounding environment and is fed to a deep
neural network N which returns the energy E;. R; is the set coordinates of all atoms in the
environment, R; = {r;; = r; — r;}.

The network is trained by minimizing the loss function
3

= 2+ ) |AF;)|?

L=peldE +55 ) 18R

in which AE and AF are the deviation of the potential energy and atomic forces between the
reference AIMD and predicted data, respectively; and ps and pr are tunable pre-factors.

Here we used a radial cutoff and a smooth cutoff of 7.0 and 6.5 A, respectively. The pre-factor pe
was set to increase from 0.02 to 1 and pr was set to decrease from 1000 to 1. We employed
20,40,80} embedding and 250,250,250} fitting network.

From 46000 AIMD frames, 37000 frames were randomly chosen to create a training set, similarly,

4500 frames for a validation set and 4500 frames for a test set.

2.3 Molecular dynamics based on machine learning interatomic
potentials

Machine learning interatomic potential molecular dynamics (MLIPs) were conducted using Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Thompson et al. 2022). To
calculate the liquid density we employed the NPT ensemble in which the pressure P and
temperature T were maintained with Nosé—Hoover barostat/thermostat (Evans and Holian 1985).
The time step was set at 1 fs. Viscosity calculations were performed using the NVT ensemble

where the temperature was controlled with the Nosé—Hoover thermostat.

2.4 Atomic systems

Here we employed cubic boxes consisting of 110 CI, 32 Na, 18 Pu, and 8 Am atoms, Figure 1,

corresponding to the composition of approximately 55 mol% NaCl, 31 mol% PuCls, and 14 mol%

Methods 3
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AmClIs. This is equivalent to adding about 14 mol% AmClIs to the eutectic binary system of NaCl
and PuCls.

Figure 1. A simulation box with Cl in green, Na in yellow, Pu in orange, and Am in grey.

Methods 4
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3.0 Results

3.1 Solid state systems

AmCl; & PuCl,

NaCl

o— o ||[d]

Figure 2. Solid state structures of three solids with chlorine in green and metal in grey/orange.

To test the accuracy of the DFT method in use, we first calculated the lattice constants of three
solids: NaCl, PuCls, and AmCls. While solid AmClIs and PuCls adopt the P63/m, NaCl has the Fm-
3m space group, Figure 2. A supercell equivalent to 2X2X4 and 3X3X3 primitive unit cells was
used for AmCIs/PuCls and NaCl, respectively. Only the Gamma point was used to sample the
Brillouin zone in DFT calculations. In the actinide chloride systems, the ferromagnetic spin
configuration appeared to be slightly more stable than the antiferromagnetic one. Table 1 shows
that these calculated parameters agree well with experimental data, indicating the accuracy of

the DFT method employed in this work.

Table 1. Calculated and experimental lattice constants and errors. Experimental data for
actinide chlorides (Asprey, Keenan, and Kruse 1965; Burns, Peterson, and Stevenson
1975) and sodium chloride (Froyen and Cohen 1986) taken the literature.

AmCls PuCls NaCl
Cal. Exp. | Err(%) | Cal. Exp. | Ermr.(%) | Cal Exp. Err.(%)
lal=]b] (&) 7.337 7.390 0.7 7.330 | 7.394 0.8
lc| (A) 4.234 4234 | ~0.0 4296 | 4.234 1.3
|l (A) 5665 | 5640 04

Results o



PNNL- 38386

3.2 Machine learning interatomic potential training

The root mean square errors (RMSESs) for different data sets, shown in Figure 4 and Table 2,
provide a quantitative measure of the accuracy of the trained interatomic potential. Compared to
the AIMD reference data sets, the observed deviations are small: the energy differences are
about 1 meV per atom, while the force differences are approximately 60 meV/A. These values
are well within the range typically considered acceptable, demonstrating that the trained

interatomic potential can reliably reproduce AIMD-level accuracy.

®F y=x
vg"’ e Training set
= & +  Validation set
% I - Testset
- >
o S
2 g
E <l
oY
ng 2
of
3
A>
be)
e R
AXTY ~ g N o
P AX AX AX AX

Eper atom, Amp(€V)

Figure 3. Potential energy calculated using the trained MLIP for different data sets versus AIMD
data.

Table 2. Error of the energy (meV/atom) and force (meV/ A) of the MLIP vs AIMD for different

datasets
Training set Validation set Test set
Energy RMSE 1.05 1.08 1.06
Force RMSE 59.5 59.6 59.6

Results 6



PNNL- 38386

3.3 Density

The density was calculated as
~m
T

with m being the total atomic mass and V being the equilibrium volume of the simulation box.
Since the mass m is independent of temperature, whereas the volume V changes with
temperature, our task reduces to determining V at given temperatures. This was accomplished
by using the PNT ensemble as mentioned in the method section. Figure 4 shows the variation of
liquid density as a function of temperature, demonstrating the expected trend of decreasing
density with rising temperature. The numerical data were fitted to a linear relationship, resulting
in the equation p = 4.54 — 9.4 x 10* X T, R = 0.999.

p (g.cm™3)

| @ MLIP-MD

3800 950 1100 1250 1400
T(K)

Figure 4. Temperature dependence of density.

3.4 Thermal expansion coefficient

The decrease of the density with temperature reflects the thermal expansion of the system. The

#=5(ar), = =56,

which was calculated directly from the density data. Figure 5 shows that the thermal expansion

thermal expansion was evaluated as

is relatively small in magnitude; nevertheless, it increases progressively as the temperature

Results 7
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rises. This is indicative of enhanced structural flexibility at higher temperatures. Fitting the

numerical data to the linear equation leadsto § = 1.510™*+ 6 x 1078 T

2.5
24r

2:3F

B (107%/K)

2.2

2800 950 1100 1250 1400
T(K)

Figure 5. Thermal expansion coefficient as a function of temperature.

3.5 Constant pressure specific heat capacity Cp

We evaluated constant pressure specific heat capacity C, by using the variation of the enthalpy

C_(&H) AH
p=\aor/, AT

Figure 6 shows that the enthalpy varies linearly with temperature over the examined range of

with temperature:

temperature. It is thus straightforward to evaluate the specific heat which amounts to 0.55 J/gK
which is slightly lower than measured values (~0.6 J/gK) of the binary NaCl-PuClz with 36 mol%

PuCls (Toni Y. Karlsson et al. 2023), which has a lower actinide content.

Results 8
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| @® MLIP-MD

—840600

—840700

H (.97

—840800

800 950 1100 1250 1400
T(K)

Figure 6. Temperature dependence of enthalpy.

3.6 Viscosity

We calculated the viscosity by using the Green Kubo approach
V t
1=17 ), B Ry @

in which V denotes the volume of the simulation box, kg is the Boltzmann constant, T is the
temperature, Py, is an off-diagonal component of pressure tensor, and the angle brackets (...)
indicate an ensemble average. A major challenge in this calculation is the poor convergence of n
as a function of time. To mitigate this, several independent simulations were carried out at each
temperature, and their results were averaged, as demonstrated in Figure 7(a).

Figure 7(b) shows the viscosity decreases rapidly with the temperature. Fitting the numerical data
to an Arrhenius-type equation a functional relationship between nand T

n = A x eB/ksT

we obtained 0.0044 mPa.s and 0.383 eV for parameters A and B, respectively.

Results 9
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0.3

I . MLIP-MD
1.00 -
% 0.2F % 0.75 |
& e
g E o050t
< 0.1 = L
0.25}
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0 1 2 Y800 1000 1200 1400
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Figure 7. Viscosity as a function of time from several independent simulations (grey) and the
averaged data (green) at 1150 K, (b) Temperature dependence of viscosity.

3.7 Thermal conductivity

We used the variant of Muller-Plathe reverse perturbation method (Plimpton 2014) to evaluate
the thermal conductivity
AQ 1
K= 2A0t CAT/Az

in which AQ denotes the amount of heat added to a “hot” region and removed from a “cold” region
along the z direction (Figure 8(a)), A is the cross-sectional area of the simulation box in the xy-
plane, 1/At is the frequency at which AQ is added or removed; and AT /Az represents the
temperature gradient along the direction from the hot to the cold regions. In our thermal
conductivity calculations, the cubic simulation box described above was extended by replicating
it three times along the z-direction. Figure 8(b) shows linear changes of the temperature between

the hot and cold regions which allow for evaluation of the gradient.

Results 10
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“hot” l‘cold” “ hotl]

1400 F S

(a) (b) & 1300K
o 1200f
" 1000
800

0.0 0.2 0.4 0.6 0.8 1.0
L, z/L,

Figure 8. (a) Schematic illustration of the “hot” and “cold” regions along the z direction under
periodic boundary conditions, (b) The variation of temperature along the z direction, (c)
Theral conductivity at different temperatures.

Figure 9 shows that (i) the thermal conductivity of the system is in the 0.2-0.3 (W cm™ K') range

and (ii) it decreases with the temperature. The thermal conductivity of this system is lower than

that of pure NaCl, which has been measured to be 0.4-0.5 (W cm™ K') (Harada et al. 1992).

Understandably, adding more heavy atoms would reduce vibrational frequencies in the system,

lowering the thermal conductivity.

0.30
_. 0.28} T
7
\v4
- ®
c 0.26} ¢
O
E i
 ou | 1
0.24 1
22t
0 900 1100 1300
T(K)

Figure 9. Thermal conductivity at different temperatures.
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3.8 Structural properties

To understand how metal ions interact with the counterion CI~, we calculated the radial distribution
functions (RDFs), g(r), for cation—anion pairs in the system at 1200 K (Figure 10). The positions
of the first peaks in g(r) indicate that the Am—Cl and Pu—Cl bond distances are almost the same
(2.73 A), and both are slightly larger than the Na—Cl bond distance (2.71 A). The RDFs also
suggest that the Na—Cl interaction is weaker than the interactions of Am—Cl and Pu—ClI. This is in
part due to the charge difference of the metal ions. The CI~ coordination number (i.e., the
ensemble-averaged number of chloride ions in the first coordination shell of each cation is 7.0 for
Pu, 7.1 for Am, and 6.2 for Na.

0123465¢67 8

Figure 10. Radial distribution functions of cation-anion pairs.
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4.0 Concluding remarks

Using molecular dynamics, we calculated the density, thermal expansion, specific heat capacity,
viscosity, and thermal conductivity of a ternary system of NaCl-PuCls-AmCIz with approximately
31 mol% PuCls and 14 mol% AmCiIs. Ab initio molecular dynamics was first employed to generate
datasets used for training an accurate machine learning interatomic potential that allowed for
extensive sampling of the system. Linear equations for the temperature dependence of the
density and thermal expansion were determined. The viscosity was found to decrease
exponentially with increasing temperature. Next, thermal conductivity was calculated, showing a
decline with temperature. Structural properties were finally calculated to understand fundamental
interactions between ions. This work provides the first evaluation of the thermophysical properties
of an important molten mixture, AmCls-PuClz-NaCl, which is relevant to fast spectrum molten salt
reactors. Finally, we will be able to compare calculated data in this report with experimental data
being determined at ldaho National Laboratory, and this will be presented in a peer-reviewed
journal article planned for FY 2026.

Concluding remarks 13



PNNL- 38386

5.0 References

Asprey, LB, TK Keenan, and FH Kruse. 1965. "Crystal structures of the trifluorides, trichlorides,
tribromides, and triiodides of americium and curium." Inorganic Chemistry 4 (7): 985-
986.

Burns, John H, JR Peterson, and JN Stevenson. 1975. "Crystallographic studies of some
transuranic trihalides: 239PuClI3, 244CmBr3, 249BkBr3 and 249CfBr3." Journal of
Inorganic and Nuclear Chemistry 37 (3): 743-749.

Chevreux, P, M Duchateau, G Serve, and M Pons. 2024. Synthesis of Actinide Chlorides as
Fuel for Fast Molten Salt Reactor.

Dion, M., H. Rydberg, E. Schrdéder, D. C. Langreth, and B. |. Lundqvist. 2004. "Van der Waals
Density Functional for General Geometries." Physical Review Letters 92 (24): 246401.
https://doi.org/10.1103/PhysRevl ett.92.246401.
https://link.aps.org/doi/10.1103/PhysRevLett.92.246401.

Doudin, Nassar, Simuck F Yuk, Matthew D Marcinkowski, Manh-Thuong Nguyen, Jin-Cheng
Liu, Yang Wang, Zbynek Novotny, Bruce D Kay, Jun Li, and Vassiliki-Alexandra
Glezakou. 2019. "Understanding heterolytic H2 cleavage and water-assisted hydrogen
spillover on Fe304 (001)-supported single palladium atoms." ACS Catalysis 9 (9): 7876-
7887.

Evans, Denis J, and Brad Lee Holian. 1985. "The nose—hoover thermostat." The Journal of
chemical physics 83 (8): 4069-4074.

Filatov, AA, Ml Vlasov, AM Potapov, and Yu P Zaikov. 2023. "Possible electrochemical imitators
for AmCI2 and CmCI3 in the Molten LiCI-KClI eutectic." Russian Metallurgy (Metally)
2023 (2): 244-247.

Froyen, Sverre, and Marvin L Cohen. 1986. "Structural properties of NaCl and KCI under
pressure." Journal of Physics C: Solid State Physics 19 (15): 2623.

Goedecker, S., M. Teter, and J. Hutter. 1996. "Separable dual-space Gaussian
pseudopotentials." Physical Review B 54 (3): 1703-1710. https://doi.org/DOI
10.1103/PhysRevB.54.1703. <Go to ISI>://WOS:A1996UZ86100053.

Harada, Makoto, Akihisa Shioi, Tsunetoshi Miura, and Shinsuke Okumi. 1992. "Thermal
conductivities of molten alkali metal halides." Industrial & engineering chemistry research
31 (10): 2400-2407.

Hayashi, Hirokazu, Masahide Takano, Mitsuo Akabori, and Kazuo Minato. 2008. "Synthesis of
americium trichloride by the reaction of americium nitride with cadmium chloride."
Journal of alloys and compounds 456 (1-2): 243-246.

Karlsson, Toni Y, and Juliano Schorne Pinto. 2024. Experimental Plan for Synthesis of an
Americium and Plutonium Containing Salt. Idaho National Laboratory (INL), Idaho Falls,
ID (United States). INL/RPT-24-80052 Revision O.

Karlsson, Toni Y., Scott C. Middlemas, Manh-Thuong Nguyen, Michael E. Woods, Kevin R.
Tolman, Vassiliki-Alexandra Glezakou, Steven D. Herrmann, Juliano Schorne-Pinto,
Ryan D. Johnson, Shawn E. Reddish, Stephen A. Warmann, and Patricia D. Paviet.
2023. "Synthesis and thermophysical property determination of NaCl-PuCI3 salts."
Journal of Molecular Liquids 387: 122636.
https://doi.org/https://doi.org/10.1016/j.molliq.2023.122636.
https://www.sciencedirect.com/science/article/pii/S016773222301440X.

Kersten, Bethany, Krista Hawthorne, Mark Williamson, Rohan Akolkar, and Christine E Duval.
2022. "Synthesis of americium trichloride via chlorination of americium oxide using
zirconium tetrachloride in LiCI-KCI molten salt." Journal of Radioanalytical and Nuclear
Chemistry 331 (12): 4913-4918.

References 14



PNNL- 38386

Kihne, Thomas D., Marcella lannuzzi, Mauro Del Ben, Vladimir V. Rybkin, Patrick Seewald,
Frederick Stein, Teodoro Laino, Rustam Z. Khaliullin, Ole Schiitt, Florian Schiffmann,
Dorothea Golze, Jan Wilhelm, Sergey Chulkov, Mohammad Hossein Bani-Hashemian,
Valéry Weber, Urban Borstnik, Mathieu Taillefumier, Alice Shoshana Jakobovits, Alfio
Lazzaro, Hans Pabst, Tiziano Mdller, Robert Schade, Manuel Guidon, Samuel
Andermatt, Nico Holmberg, Gregory K. Schenter, Anna Hehn, Augustin Bussy, Fabian
Belleflamme, Gloria Tabacchi, Andreas GI6R, Michael Lass, lain Bethune, Christopher J.
Mundy, Christian Plessl, Matt Watkins, Joost VandeVondele, Matthias Krack, and Jirg
Hutter. 2020. "CP2K: An electronic structure and molecular dynamics software package
- Quickstep: Efficient and accurate electronic structure calculations." The Journal of
Chemical Physics 152 (19). https://doi.org/10.1063/5.0007045.

Li, Ru - song, Yu - song He, Jin - tao Wang, Zhi - yong Liu, Yuan - ming Wang, Ze - lin Cao,
and Zheng Xie. 2023. "Mixed 5 f configuration in americium trichloride: Dynamical
mean - field theory combined with density functional theory study." International Journal
of Quantum Chemistry 123 (21): e27213.

Lippert, G., J. Hutter, and M. Parrinello. 1997. "A hybrid Gaussian and plane wave density
functional scheme." Molecular Physics 92 (3): 477-487. https://doi.org/Doi
10.1080/00268979709482119. <Go to I1SI>://WOS:A1997YC60700017.

Lu, Jun-Bo, David C. Cantu, Cong-Qiao Xu, Manh-Thuong Nguyen, Han-Shi Hu, Vassiliki-
Alexandra Glezakou, Roger Rousseau, and Jun Li. 2021. "Norm-Conserving
Pseudopotentials and Basis Sets to Explore Actinide Chemistry in Complex
Environments." Journal of Chemical Theory and Computation 17 (6): 3360-3371.
https://doi.org/10.1021/acs.jctc.1c00026. https://doi.org/10.1021/acs.jctc.1c00026.

Martyna, Glenn J, Michael L Klein, and Mark Tuckerman. 1992. "Nosé—Hoover chains: The
canonical ensemble via continuous dynamics." The Journal of chemical physics 97 (4):
2635-2643.

Nguyen, Manh-Thuong, Vassiliki-Alexandra Glezakou, Roger Rousseau, and Patricia D Paviet.
2023. "Exploring NaCl-PuCI3 molten salts with machine learning interatomic potentials
and graph theory." Applied Materials Today 35: 101951.

Nguyen, Manh-Thuong, Michael E. Woods, Juliano Schorne-Pinto, Nick H. Erfurth, Scott C.
Middlemas, and Toni Karlsson. 2025. "Thermophysical Properties of NaCl-UCI3—-PuCI3
Molten Salts: A Combined Computational and Experimental Study." ACS Applied Energy
Materials 8 (10): 6482-6491. https://doi.org/10.1021/acsaem.5c00278.
https://doi.org/10.1021/acsaem.5c00278.

Plimpton, Steven J. 2014. Modeling thermal transport and viscosity with molecular dynamics.
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

Salanne, Mathieu, and Paul A Madden. 2011. "Polarization effects in ionic solids and melts."
Molecular Physics 109 (19): 2299-2315.

Serp, Jerome, Pierre Chamelot, Serge Fourcaudot, Rudy JM Konings, Rikard Malmbeck, Carole
Pernel, Jean-Claude Poignet, Jean Rebizant, and J-P Glatz. 2006. "Electrochemical
behaviour of americium ions in LiCI-KCI eutectic melt." Electrochimica acta 51 (19):
4024-4032.

Thompson, Aidan P, H Metin Aktulga, Richard Berger, Dan S Bolintineanu, W Michael Brown,
Paul S Crozier, Pieter J In't Veld, Axel Kohimeyer, Stan G Moore, and Trung Dac
Nguyen. 2022. "LAMMPS-a flexible simulation tool for particle-based materials modeling
at the atomic, meso, and continuum scales." Computer Physics Communications 271:
108171.

Vetere, Valentina, Bjorn O Roos, Pascale Maldivi, and Carlo Adamo. 2004. "A theoretical study
of the bonding in trivalent americium complexes." Chemical physics letters 396 (4-6):
452-457.

References

15



PNNL- 38386

Xu, Tingrui, Xuejiao Li, Yang Wang, and Zhongfeng Tang. 2023. "Development of deep
potentials of molten MgCl2—NaCl and MgCI2—KCl salts driven by machine learning."
ACS Applied Materials & Interfaces 15 (11): 14184-14195.

Zeng, Jinzhe, Duo Zhang, Denghui Lu, Pinghui Mo, Zeyu Li, Yixiao Chen, Marian Rynik, Li'ang
Huang, Ziyao Li, and Shaochen Shi. 2023. "DeePMD-kit v2: A software package for
deep potential models." The Journal of Chemical Physics 159 (5).

Zhang, Yingkai, and Weitao Yang. 1998. "Comment on "*Generalized Gradient Approximation
Made Simple"." Physical Review Letters 80 (4): 890-890.
https://doi.org/10.1103/PhysRevl ett.80.890.
https://link.aps.org/doi/10.1103/PhysRevLett.80.890.

References

16






Pacific Northwest
National Laboratory

902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov

PNNL- 38386



