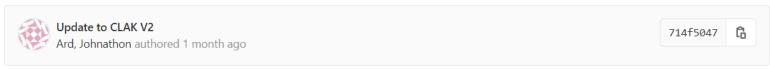


MSTDB-TP Development

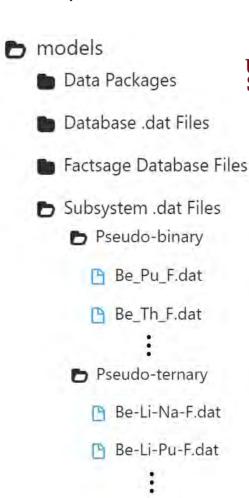

- Email: <u>mstdb@ornl.gov</u>
- URL: code.ornl.gov/neams/mstdb-tp

energy.gov/ne

MSTDB-TC Development

Name	Last commit	Last update
.gitlab/issue_templates	Adding new-data-package checklist issue template.	1 year ago
models	Update to CLAK V2	1 month ago
README.md	Update README.md for MSAX-CLAK	1 month ago

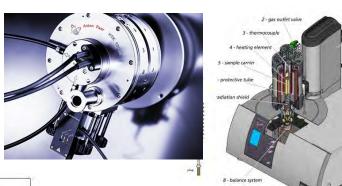
README.md


MSTDB

The molten salt thermochemical database (MSTDB).

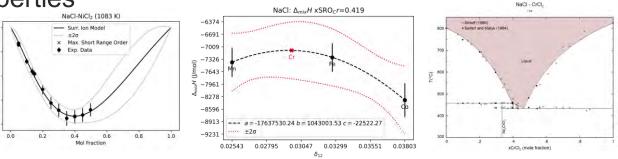
MSTDB will be a publicly available database of thermodynamic models and values for fluoride and chloride molten salt components and related systems of interest with respect to molten salt reactor technology. These include fuel or coolant salts, consequential fission product and transuranic elements, contaminants such as air and moisture, and likely corrosion product elements such as nickel and chromium. Phases will include gas/vapor, liquids (e.g., molten salts, noble metals), and solid compounds. The database will consist of one or more files constituting the entire developed database in the "Chemsage" format accessible with the FactSage commercial package and compatible with the open source equilibrium code Thermochimica (i.e., in the .dat format).

The models and values provided within MSTDB will be obtained through combinations of literature-reported information, first principles calculations, and experimental measurements. These will be used to a greater or lesser extent as needed in assessments for binary, ternary, and higher order systems. A system is said to be assessed when sufficient experimental and theoretical data are available to optimize adjustable thermochemical values and parameters for each model and species so as to represent each phase in that system. In essence, a system is assessed when models and values appropriately reproduce the phase equilibria (phase diagram) and attendant values such as heat capacity and vapor pressures.

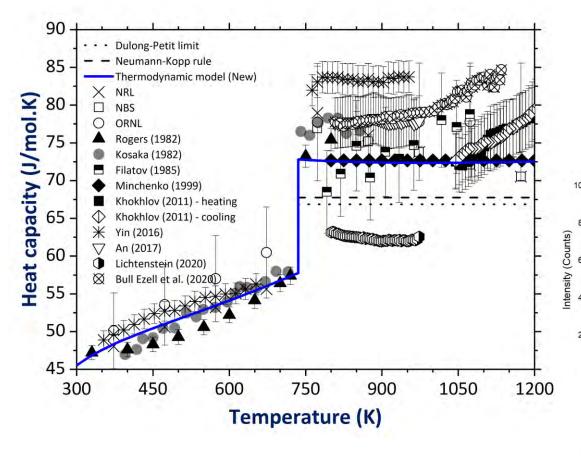

Granted access covers both databases (on same GitLab)

MSTDB-TC Methodologies: Assessments Generate Accurate Thermodynamic Values/Parameters

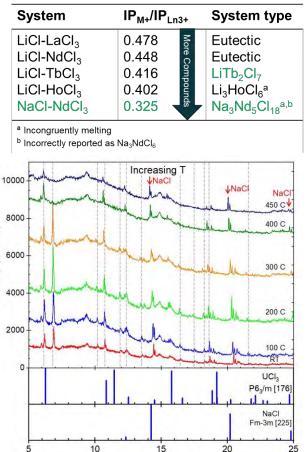
- Data mining
- First principles calculations
 - Determining energy of formation for crystalline phases
 - Coordination numbers to improve molten salt models
- Experimental determination of key values
 - DSC for phase transitions (solidus, liquidus...)
 - XRD for phase identification
- CALPHAD assessments: Uses all appropriate system properties to fit to phase thermodynamic models
 - Yields generally applicable model values/parameters
 - Reproduce phase equilibria and thermal properties


DSC and XRD measurements

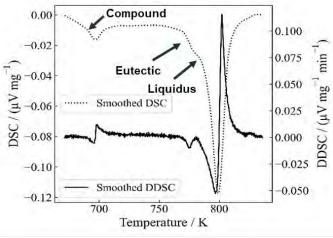
Netzsch SS sealable DSC crucible w Ni liner



-4000


Issues in Base System Values Are Challenging

FLiNaK liquid Cp value results vary and needed to be reconciled



Incongruent melting compound NaU₂Cl₇ or Na₃U₅Cl₁₈ may exist

Ionic potential (IP) correlations

DSC indicates endothermic peak near 688K: Intermediate compound

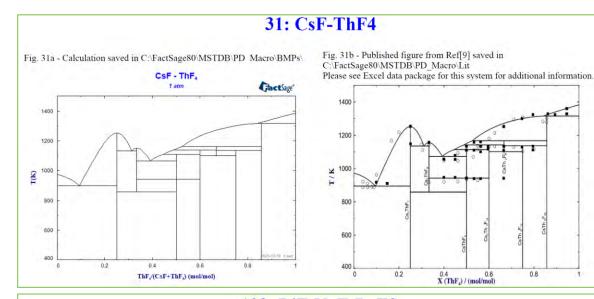
DSC at 33.4mol% UCl₃ (5 K min⁻¹)

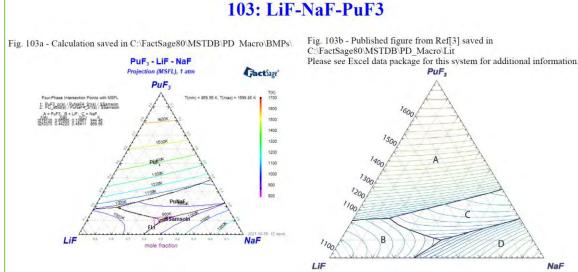
HT XRD reveals high temperature intermediate phase

energy.gov/ne

Linked Data Packages Provided for All Included Values

- Excel files for each modeled pseudo-binary and –ternary system:
 - Pure compounds
 - Liquid solutions
 - Solid solutions
 - Linked references
 - Reassessed and Original values


	Α	В	С	D	Е	F	G	
1	Pseudo-binary Liquid Interaction Parameters							
2	Species A	Species B	i	j	Ref. #	Ref Link	Comments	
3	LiF	KF	0	0	2	Link	Changed to (-7200 +4.8*T -0.0014*T^2)	
4	LiF	KF	1	0	2	Link	Changed to (-1200)	
5	NaF	KF	0	0	2	Link		
6	NaF	KF	1	0	2	Link		
7	LiF	NaF	0	0	7	Link	Changed to (-2639.4 +0.921*T)	
8	LiF	NaF	1	0	7	Link	Set to 0	
9	LiF	NaF	0	1	7	Link	Changed to (50)	

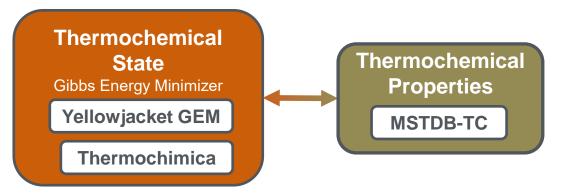

1	Α	В	C	D	E	F	G	Н
1	Ref. Number	Authors	Year	Title	Publication	Issue/Chapter	Pages	ORNL Doc#
2	1	E. Capelli, O. Benes, R.J.M Konings	2014	Thermodynamic assessment of the LiF-NaF-BeF2-ThF4-UF4 system	Journal of Nuclear Materials	449	111-121	
3	2	O. Benes, R.J.M Konings	2008	Thermodynamic evaluation of the MF-LaF3 (M = Li, Na, K, Rb, Cs) systems	Calphad-Computer Coupling of Phase Diagrams and Thermochemistry	32	121-128	
	3	O. Benes, R.J.M Konings	2008	Actinide burner fuel: Potential compositions based on the thermodynamic evaluation of MF-PuF3 (M = Li, Na, K, Rb, Cs) and LaF3-PuF3 systems	Journal of Nuclear Materials	377	449-457	

energy.gov/ne

Tested for Reproducibility With Respect to Published Diagrams

- Each release version of the MSTDB-TC undergoes an ORNL evaluation
- Primary criteria is reproduction of modeled phase diagrams.
- MSTDB-TC computed diagrams provided sideby-side with published versions
- Calculated phase diagram for all modeled systems
- Compared against published diagrams
- Notes section for discussion of selected systems
- Provided in pdf with MSTDB-TC documentation

MSTDB-TC Ver. 1.2 content


Fluoride-based Systems

- Be-Ca-Ce-Cs-K-La-Li-Mg-Na-Ni-Nd-Pu-Rb-Th-U-F
- 108 stoichiometric compounds
- 45 pseudo-binary subsystems
- 26 pseudo-ternary subsystems
- Higher order systems
 - LiF-NaF-RbF-LaF₃
 - LiF-NaF-CaF₂-LaF₃
 - LiF-NaF-BeF₂-ThF₄-UF₄-PuF₃
 - NaCl-MgCl₂-UCl₃-PuCl₃
- 22 solid solutions

Chloride-based Systems

- Cs-K-Li-Mg-Na-Pu-U-Cl
- 37 stoichiometric compounds
- 13 pseudo-binary subsystems
- 1 pseudo-ternary subsystem
- Higher order system
 - NaCl-MgCl₂-UCl₃-PuCl₃
- 3 solid solutions
- Models for excess K and Mg in solution

MSTDB-TC provides Gibbs functions for calculations in simulation codes

New Content in Ver. 2: Expected June 2022

Highlighting corrosion and cesium- and iodine- containing systems

Additional Systems

- NaF-NaCl
- KF-KCI
- CsF-CsCl
- KCI-KI
- CsF-Csl
- CsCl-Csl
- NaCl-Nal
- KCI-KI
- BeF₂-Bel₂
- KF-KI

- CsF-BeF₂
- CrCl₂-MgCl₂
- CrCl₃-(Na, K, Mg)Clx
- KCl-MgCl₂-NaCl
- FeCl₂-KCl-NaCl
- FeCl2-MgCl₂-NaCl
- KCl-NaCl-NiCl₂
- KCI-MgCl₂-NiCl₂

Reassessed Existing Content

- LiF-CsF
- NaF-CsF
- KF-CsF
- CaF₂-LaF₃
- CaF_2 -Th F_4
- NaF-CeF₃
- LiF-CaF₂-ThF₄

MSTDB-TP Database Entries

- MSTDB-TP Version 2.0 in-progress (available April 2022)
- Type of data (along with references and uncertainty)
 - Melting temperature
- Viscosity
- Boiling temperature
- Thermal Conductivity

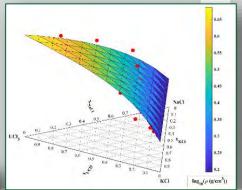
➤ Density

> Heat capacity

- ➤ Optical Properties
- 273 entries currently: 33 pure, 214 binaries, 20 ternaries & 6 quaternaries

10

Component Data


- Estimation from databases
- Multicomponent system behavior estimated by extrapolation of lower order systems (pseudo-binary)
- Databases contain pure and binary mixture properties

Modeling

- Redlich-Kister Expansion
 - Corrects for interaction in binary system
 - Accuracy depends on pure and binary component data

Extrapolation

- Extrapolate expansion and fit to higher order systems
 - Ternaries
 - Quaternaries

MSTDB-TP

 Database of models/ model parameters that will represent salt solution thermal property behavior as a function of temperature and composition

Saline

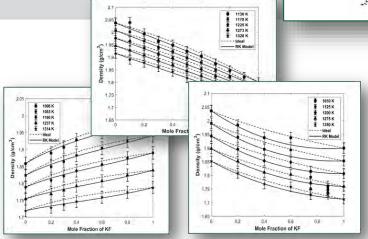
- Application Programming Interface
- Provides a stable C++ interface for obtaining supported properties

include "default_data_store.hh" #include "thermophysical_properties.hh

Thermophysical Properties tp;

double density = tp.rho(900); double viscosity= tp.mu(900): double thermal_conductivity = tp.k(900); louble heat capacity = tp.cp(900)

tp.initialize(&d);

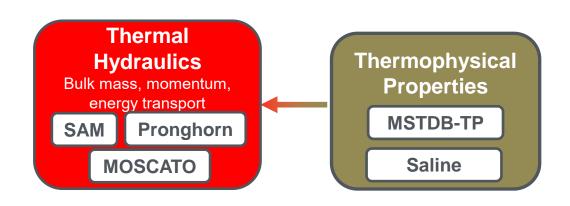

// Pick a composition

// Construct the thermophysical properties object

// Obtain data using temperature in Kelvin

tp.setComposition({"LiF","NaF","KF"},{0.465,0.115,0.42});

```
Density Equation (g/cm<sup>3</sup>),
Pure
                         T in K
Salt
           2.6616 - 6.6500 \times 10^{-4} \text{ T}
 KF
LiF
           2.3289 - 4.6803 x 10<sup>-4</sup> T
           2.6820 - 6.1510 \times 10^{-4} \text{ T}
NaF
```



- Melting/Boiling Temperatures
- Density
- Thermal conductivity
- Viscosity
- Heat Capacity
- Optical Properties

MSTDB-TP

Molten Salt Thermophysical Properties API - Saline

- Under active development
- Provides a stable C++ interface for obtaining supported properties (density, viscosity, heat capacity, and thermal conductivity)
 - Can be extended to provide access to alternate and/or additional data models without affecting client codes.
- Seeks to provide results which mirror experiment while being robust in the absence of data.
 - Falls back on ideal mixing
- Support for standalone use provided via python bindings
 - Could be extended to additional bindings

Questions/Discussion

energy.gov/ne

13