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Materials in Nuclear Energy Systems can Fail



Extreme Environments that Must be Overcome in Developing High Dose Radiation Tolerant 
Advanced Reactor Cladding Materials 
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Reduced embrittlement, swelling, creep

Enhancements with 
Fabrication Complexity
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Fabrication ComplexityEnhancements with Fabrication Complexity

Different Reactor 
options to change 

requirements
LFR, MSR, HTR

FCCI

Radiation Temperature

Corrosion

Ultimate goal: Develop and test innovative new cladding materials with the 
potential to revolutionize or transform future nuclear energy applications

Ultra-high
Burnup
Fuels



Example of a High Burnup 
Cladding Material: HT-9

• Tempered Martensitic Steel 
with a ferritic lath 
microstructure

• Elemental composition is Fe-
12Cr-1Mo-0.2C-0.5W-0.3Si-
0.5Ni-0.3V-0.3Mn

• Shows excellent void swelling 
resistance to >200 dpa but 
strong hardening for 
irradiations below 400C.

10 µm

Chin, Neuhold, Straalsund, Nuc. Tech, 1982
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Mechanical Test Results on ACO-3 Duct Show strong Effects of Irradiation Temperature
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TEM analysis shows variation of irradiation defects with irradiation temperature (B.H. Sencer, 
INL, O. Anderoglu, J. Van den Bosch, LANL)

T=384C, 28 dpa

• G-phase 
precipitates and 
alpha prime 
observed

•No void swelling 
observed.

T=450C, 155 dpa

• Precipitation 
observed
• Dislocations of both
a/2<111> and a<100>
• Loops of a<100>
• Void swelling 
observed (~0.3 %)

T=505C, 4 dpa

•No precipitation or 
void swelling 
observed.

Small Angle Neutron Scattering 
Measurements
Obtain accurate measurement of α’ 
vs. dose and irr. Temperature
Measurements completed on 5 
specimens from ACO-3 duct



Limitations in service life with HT9

Although HT9 shows excellent void swelling resistance to 
doses over 200 dpa, it has some limitations
• Low Temperature Embrittlement below 400C
• Fuel Clad chemical interaction with metallic fuels
• Low creep strength above 600C
• Radiation induced segregation and second phase 

precipitation after high dose irradiations
• Corrosion limitations in other coolants (e.g. lead or molten 

salt)
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Vision of IMARC program

• Develop and test innovative new cladding materials with 
the potential to revolutionize or transform future nuclear 
energy applications

• New alloy compositions
• Coatings to eliminate FCCI and improve corrosion resistance
• Innovative microstructures with extreme radiation tolerance
• Innovative manufacturing and joining methods to produce 

hermetically sealed thin-walled tubing for cladding applications
• Testing methods to investigate high dose radiation tolerance

• High dose irradiations 
• Mechanical testing over uniformly irradiated materials

• Methods to accelerate materials qualification
8



Advanced Materials and Manufacturing Technologies (AMMT)

Innovative Materials for Advanced Reactor 
Cladding (IMARC)

NE-4: Fuel Cladding 
Materials

Leading Innovation in 
Fuel Technology (LIFT)

Accident Tolerant Fuels (ATF)

Light Water Reactor Sustainability (LWRS)

Advanced Reactor Technologies (ART)NE-5: Structural 
materials

Materials Research in the Office of Nuclear Energy
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Materials Innovations Required for 
Development of Advanced Reactor Cladding

• Advanced Alloy development and testing over a wide 
range of composition space.

• Innovative manufacturing technologies for thin walled 
tube development and coating techniques over long 
lengths of tubing (e.g. 9 feet)

• Joining technologies for thin walled tubes of innovative 
new alloys

• High dose irradiation testing techniques and small scale 
testing on uniformly irradiated volumes.
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How can we obtain high dose irradiation data?
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Summary 

• Overall aim of this workshop is to obtain input from 
industry, national laboratories and universities leading 
to priority research directions for this new program on 
Innovative Materials for Advanced Reactor Cladding

• Next on the agenda are talks from industry, national lab and 
universities

• Encourage questions and suggestions from the audience
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