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High dose, fast reactor irradiation of structural materials
can cause dimensional changes (e.g., swelling)
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Sci., 2 ed., 2017.

Swelling arises from non equal
partitioning of vacancies and self-
interstitials to extended defects and
can be correlated to cavity (void)
distribution

Cavities can be stabilized by helium gas
atoms

STEM HAADF

T91 irradiated to 17 dpa at 376°C in BOR-60
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He/dpa ratio is an
important factor
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Complexity of radiation
effects precludes
empirical approach of
trial and error = focus
on scientifically driven
investigation combining
experiment & modeling
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Literature data for high-dose radiation effects is commonly
resiricted to below 200 dpa, with most below 50 dpa

Swelling (%)

[

r # HTO, 84425, 1038°C/5munr+7 60°C/3 0min. 400°C

/7 * HTO, 84425, 1065°C/30min+750°C/1h, 384-460°C
0.01%/dpa »

1.5
/
7 ® ®HTS, 01353, 1038°C/5mun+7 60°C/3 0min, 400°C
L] [ ] ®
L &
1 ® HT9, 91353, 1100°C2mn+550°C/2 b, 400°C
&
L
& ®HTS 9607R2,
0.5 -+~ & 1000°C/20+1100°C/ 5muin+700°C/2h 420°C
o * ® HTO 0607R2, 1038°C/5min+760°C/2 5h 400-
& & ® * ® 420°C
o ! M & . | | |
® HTS 9607F2, 1050°C/ 5min+760°C/3 0min, 420°C
0 50 100 150 200 250
Damage (dpa)

[1] D. Gelles, J. Nucl. Mater. 237 (1996) 293.

[2] M.B. Toloczko, F.A. Garner, C.R. Eiholzer, J. Nucl. Mater. 215 (1994) 604.

[3] M.B. Toloczko, F.A. Garner, Journal 237 (1996) 289.

[4] M.B. Toloczko, F.A. Garner, Eff. Radiat. Mater. ASTM STP 1325 (1999).

[5] B.H. Sencer, J.R. Kennedy, J.I. Cole, S.A. Maloy, F.A. Garner, J. Nucl. Mater. 393 (2009) 235.

[6] J.J. Kai, R.L. Klueh, J. Nucl. Mater. 230 (1996) 116.

[7] J. Van Den Bosch, O. Anderoglu, R. Dickerson, M. Hartl, P. Dickerson, J.A. Aguiar, P. Hosemann, M.B. Toloczko, S. A. Maloy,
J. Nucl. Mater. 440 (2013) 91.

NUCLEAR ENGINEERING &
RADIOLOGICAL SCIENCES

UNIVERSITY OF MICHIGAN



Our understanding of high dose (>50 - 100 dpa) can be
extended by the use of high flux ion beams...
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Understanding the acceleration effect at face value is




Understanding the acceleration effect at face value is
akin to baking

(8

...but, it's not so simple



Traditional approach, Mansur shift, DT=120°C
does not replicate microstructure

BOR-60 DI=BOR-60 + 120°C
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Objective

ldentify the underlying processes governing cavity
nucleation and early-stage growth to replicate
and predict the cavity microstructure of neutron

Iradiated complex steels with dual ion irradiation.

Impacts of reaching the objective:
e Reduction in reliance on test reactors for data at high dpa

e Disruptive leap in speed (1000x) of assessing radiation effects, allowing
rapid development of radiation resistant materials

e Reduction in cost by up to 1000x, providing resources for complementary
programs

e Accelerating the licensing process



Ovur “reference’” reactor is the BOR-60 fast reactor
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Our acceleration method is achieved using the
Michigan lon Beam Laboratory

» Extremely well-controlled irradiations (temperature, dose,
dose rate)
» High doses are easily achievable
- 1 dpa/day for protons
- 100 dpa/day for self-ions
* Dual/Triple beam capability — to account for transmutation
product
* Low sample activation
* Cheap




Critical to simulating neutrons using ions is the capacity for
single, dual, and triple beam ion irradiations

LN, Anti-Contamination Device

Residual Gas Analyzer Ton Gauge
Plasma Cleaner \
/ Faraday Cup Foil Degrader
— BPM ®

Each beamline contains:
‘ Slit Apertures %

Faraday Cup

The Michigan Muli-beam Chamber (MBC) for fast reactor materials development NUCLEAR ENGINEERING &
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Critical to simulating neutrons using ions is the capacity for
single, dual, and triple beam ion irradiations
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Design of experiments to meet our objective
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Emulation of Reactor Irradiation Using Dual lons
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Emulation of Reactor Irradiation Using Dual lons
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Coupling experimental results with a cluster dynamics model
provides detailed insights on helium-dose rate-temperature
invariances

Spatial Diffusion Aggregation and
recombination

dc,
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« Adds a third axis to the phase space for ‘sites’
« Only helium monomers bind to these sites with an input binding energy (Gao JNM 418)
* Bound helium is immobile, and can absorb incoming helium or vacancies to provide an alternative
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Helium trapping and detrapping must be accounted for
in temperature shifts o account for dose rate
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« Enhanced nucleation from helium trapping results in the experimentally
observed temperature shift.
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Helium “flows” from sink to sink based on binding energy

Dislocation Lines (weak trap) Dislocation Loops (strong sink)

Time dependence:

« 1. Helium diffuses to sinks
and traps in proportion to
sink strength.

e 2. Helium releases from a
weaker trap and diffuses.

« 3. Helium accumulates at
the strongest trap.

Cavities (strongest trap)



Higher He injection rate to counter lack of detrapping in the
short ion irradiation time

Initial microstructure
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TYSON COLE

Conclusions

Enhanced nucleation from helium trapping results in
the experimentally observed temperature shift with
damage rafe.

DR. JAMES TEETER?
I AM PROFESSOR
FREIDRICH VON TOTTER
AND I BELIEVE I HAVE
DISCOVERED THE SOLUTION
TO YOUR PROBLEM.

As the damage rate is increased for a fixed
temperature, the amount of helium trapped at sinks
other than cavities increases from the lack of fime
(during the short ion irradiations) 1o release from
weaker traps and therefore the helium injection rate
must be increased to compensate.

Temperature and helium rate must be increased with
damage rate to match cavity microstructure during
cavity nucleation.

At high dpa (past cavity nucleation), ion helium rate
should be lowered to reactor helium generation rate.

© 2011 TYSON COLE THEDEEPEND-COMIC.BLOGSPOT.COM
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