

Perspectives on the Application of Nuclear at Small Scales

Andrew Sowder

Sr. Technical Executive, Advanced Nuclear Technology

GAIN – EPRI – NEI Microreactor Program Virtual Workshop August 19, 2020

 Image: Market in the second second

What is the value of reliable power...

...to the submarine crew and mission at 500 m depth?

..to the research station cut off from resupply for months?

LINE AD ANTRON

MARTIN

PM-3A NUCLEAR POWER PLANT

....

100

INT. CHINCH PKG, NO. 12

101.4

111

...

McMurdo Station, Antarctica

THS DO FIND TRUCK SHIPPERT

...to the urban hospital campus after a devastating storm?

....

Post-Katrina New Orleans, Louisiana Credit: The Times-Picayune

...to the remote community above the Arctic Circle?

Gulf of Alaska

Beaufort

Barrow

Sea

Utqiagvik (Barrow), Alaska

Credit: Galen Rowell/Corbis

Chukchi

Sea

Applications of Energy-Dense Power at MW-Scales

		Civilian	National Security and Defense	Grid Connection
Iransportable	Fixed	 hospitals data centers industrial parks airports communication infrastructure fuel terminals and pipelines water treatment and distribution wastewater pumping and treatment 	 domestic military bases national laboratories government centers other critical installations and infrastructure 	YES grid connected but islandable to support micro-grid applications
		 remote communities remote mining, oil recovery, and other industrial activities 	 remote military installations 	NO
	Portable	 disaster response and recovery 	 forward and remote operating bases 	off-grid or micro-grid applications

GEN I & II

Early demonstrations through GW-scale commercial fleets

- Diversity of designs
- Diversity of vendors
- Diversity within vendors
- Limited standardization

www.epri.com

- Aggressive build rates
- Evolving regulations

GEN III/III+

Evolutionary designs, GW-scale +

- Convergence on ALWRs
- Passive safety
- Standardization
- Integration with licensing
- Emergence of SMRs
 EPRI and European utilities establish
 LWR-centric requirements

Microreactors

MWe-scale expands technology options

- Heat pipe cooling
- Remote deployment
- New markets
- Competition with diesel

Advanced Reactors

Beyond large LWRs: GEN IV, non-LWRs, lwSMRs

- Diversity of vendors and designs
- Aggressive cost and schedule targets
- Competitiveness via new missions and customers
- Focus on innovation, tension with standardization?
- Evolving regulatory frameworks

EPRI launches AR Owner-Operator Requirements

© 2020 Electric Power Research Institute, Inc. All rights rese

Evolving Technologies, Customers, Missions, and Requirements

EPRI Owner-Operator Requirements Guide (ORG) for Advanced Reactors Rev. 1 Published June 2019 [Report 3002015751]

- Technology and mission inclusive <u>framework</u> (vs. prescriptive specification) to:
 - Align design attributes with customer needs
 - Standardize terms, attributes, and requirements rather than prescribing them
 - Facilitate communication with key stakeholders, including regulators
- Sharing common origin and purpose with EPRI URD, the EUR, and other LWR guidance

Compelling business cases for advanced reactors have yet to be clearly elaborated.

10

EPRI Expansion of Owner-Operator Requirements for ARs

EPRI Advanced Manufacturing – Toolbox of Methods

Powder Metallurgy – Hot Isostatic Pressing (PM-HIP)

- 44% scale; A508 Class 1, Grade 3; 27 penetrations
- Largest single monolithic structure for existing HIP
- 1650kg (3650lbs), 1270mm (50 inches) diameter

- 3.55m (140in) Diameter x 2m (79in) (T) HIP Vessel
- Load capacity = 250,000 lbs (113,000kgs)

EPRI Advanced Manufacturing – Toolbox of Methods

Electron Beam Welding (EBW)

Lower Flange Shell Mockup e-Beam Weld: ~6 ft (1.82m) diameter completed in 47 minutes (vs. a week or more)

www.epri.com

Diode Laser Cladding (DLW)

- Robotic machine welding; reasonable deposition rates
- Significantly reduces cladding thickness required (~3-4mm)
- Post cladding machining NOT required

Economics and Competitiveness of Advanced Nuclear Exploring the Role of Advanced Nuclear in Future Energy Markets. March 2018, Report 3002011803

 EPRI developed and maintains its REGEN model as a state-of-the-art resource for projecting capacity expansion to meet future energy market needs.

Advanced reactor competitiveness dependent on multiple factors...not just cost.

EPRI Techno-Economic Assessment of Generation Technologies

 EPRI developed and maintains TAGWeb[™] as a credible source of power generation and storage technology cost and performance data and as a financial analysis tool for utility resource planning.

TAGWeb[™] provides credible cost and performance data on generation technology.

Credit: Third Way

Atoms for ... resilience, continuity, civilization