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Il INL Testing and Characterization Efforts

Development of standard irradiation capsule ISHA-1
— Using for SS316H and 16-8-2 Weld Metal

In-Situ Property Measurement
— Demonstration of single head thermal reflectance stage within G4 Hydra
— Development of additional modalities using the feedthrough
ANCERS, Application of Non-destructive Combinatorial Examination of
Radioactive Samples
— Design of Gamma-Ray Emission Tomography Assay (GRETA) table
— Developing reconstruction methods using standard samples

High temperature alloy characterization
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Il FY21 - Universal Drop-in Capsule for ATR Testing

* Under NMDQI, we developed a semi-universal drop-in capsule for
irradiation in the Advanced Test Reactor (ATR) called the Irradiation
System for High-throughput Acquisition (ISHA-1). This utilizes a
standard outer capsule that can facilitate both fuel experiments or
structural material specimens in a variety of ATR Positions.

— Structural material testing can support compact tension, bend bar,
and tensile specimen geometries for temperatures up to 800 "C.

— Utilizes concentric ASME pressure boundaries in order to support Hrm
more reactive material irradiation testing within ATR, such as
molten salts and other reactive materials.

ISHA enables a rapid
design cycle for irradiation

testing that provides
significant savings and
standardized specimen
geometries



- SS316 Irradiation Test

« Partnership with Kairos Power ARDP
award and NMDQi efforts

- Irradiating welded SS316H with AWS
16-8-2 weld metal

- Temperatures of 550 'C and 650 "C

— Target doses of <1 dpa, 1-2 dpa, 10-15
dpa

« Objectives will be to mechanically characterize difference between the base metal,
weld metal, and heat affected zone

« National Reactor Innovation Center (NRIC) is funding the design, assembly, and
deployment of three in-cell load frames to perform the mechanical tests

« Multiple creep rupture lifetimes being investigated

« FY22-FY27 effort
— Irradiation and PIE funded through ARDP award

High temperature creep testing of

316 and small scale specimens




- Thermal Reflectance Method and the SPTR

oscilloscope

* Thermal reflectance methods utilize the small, local
change in optical reflectance of a material based upon its
temperature

— Can compare temperature vs frequency (frequency
domain) or temperature vs time (time domain)

— SPTR utilizes a time domain interpretation
 Thermal reflectance is the basis for the Thermal

Conductivity Microscope (TCM) at the Irradiated
Materials Characterization Laboratory (IMCL)

» The square pulse thermal reflectance (SPTR) method
was developed to support in-situ testing within the G4
Hydra PFIB/SEM

— Spot sizes on the order of 2 um on the specimen

Explicitly correlating
thermal/mechanical
properties to
microstructural features

surface during PIE
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Il Design of Thermal Reflectance Head in G4 Hydra

* |n-Situ testing property testing during
microscopy

« Stage compresses both the probe and
pump lasers into a single optic that can
support laser change outs from outside
the SEM

» Feed through a vacuum port on the
SEM chamber

M Y Wang, V Chauhan, Z Hua, R Schley,
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Ml Square Pulse Thermal Reflectance (SPTR) Results
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I (nvestigation of TRISO Particle in G4

* Atri-isotructure (TRISO) fuel particle was used
as a basis for demonstrating the SPTR
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using laser-based thermoreflectance methods
Y Wang, Z Hua, R Schley, G Beausoleil Il, DH Hurley - Journal of Nuclear Materials, 2022

IDAHO NATIONAL LABORATORY




FY21. Began Development of Integrated Tomographic
Methods for Characterization for Irradiated Materials

 To increase the throughput of materials testing and
characterization, combinatorial tomographic methods
are under development with the goal of increasing the
scientific impact of analysis but combining the data Combining
output of a single sample characterized with multiple tomographic methods
investigative methods. allows each to make

o _ _ _ up for the others’
— Application of Non-destructive Combinatorial
Examination of Radioactive Samples (ANCERS)

shortcomings, thus
improving the value
— Provide isotopic and spatial resolution <10 um on proposition of

large, dense irradiated specimens tomography on

irradiated materials
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Jlll Gamma Ray Emission Tomography Assay (GRETA)
System

- Gamma emission tomography (GET) instrument to
support ANCERS

* A high purity Ge detector was received and
characterized

- Unfortunately, there were some problems with the
received detector and the vendor Is in process of :
replacing it. F —— Mouel

L —— Measurement

Counts, s

Energy, MeV
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- High Temperature Material Development
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B Alloy Analysis

* Investigating high temperature stability and phases
of MONDbTI based MPEAs

— Fabricated using cryogenic milling and SPS
— MoNDbTI mixed with Zr, VZr, and CrV
— Comparisons with arc-melt methdos

* Current work
— Alloys currently undergoing tensile testing
— TTUSC irradiation test awaiting ATR re-start
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- FY23_ FY25 H | g h Te m p St I at eg y Original LDRD that fabricated alloys

o sgorn || o Ses
- Advanced Alloy Design - iny \
— Machine learning algorithm to predict %A—#

material mechanical properties NSF Cola (oS FY2L NDQ
— Cryogenic milled powders and SPS oye Coumaand
. HT stability

to fabricate alloys —@—%}%

B Phase and meChan|Ca| teStIng Harvested and Proposed New Work Scopes

- High temperature phase stability and _ _ _ _
property assessment ATR PAS E:;: NTTlg Ccnt(i;:t; FI'ViIBL DFTeh#::sﬁ

« TTUSC — Neutron irradiation and
mechanical testing

| j
S
* MIBL Creep Rig — in-situ ion irradiation - + - R— -

and creep testing
* NSF Positron Annihilation Spectrometry Demonstrates

* Addition of ModSim development for experimental framework
atomistic behaviors for testing new alloys  warony




Il Utilizing ATF-2 Irradiation Opportunities

* Vendors often miss insertion dates and are replaced by
dummy capsules

— Conditions are within a flux trap typical of PWR core
— 300 series SS
— Simple cylinder for analysis credit
— Typical minimum irradiation time of 2-3 cycles in the
position
* The source of these cylinders is somewhat irrelevant and
so the option of fabricating A/IM SS316 cylinder

— Fabricate a collection of A/IM SS316 capsules with
varying parameters and keep on hand to perform
irradiations when available

Essentially a ‘free’ ATR

irradiation in PWR Conditions
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