

Printed SiC for Nuclear Applications

Andy Nelson, Kory Linton & Chris Petrie Section Head, Nuclear Fuel Development TCR Fuels Thrust Lead

18 May, 2022

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Contributions from: D. Richardson, G. Vasudevamurthy, D. Schappel, D. Carpenter, R. Seibert, A. Rogers, T. Lach, H. Wang, A. Le Coq, T. Koyanagi, T.S. Byun, K. Terrani

Transformational Challenge Reactor (TCR) Fuel

- Conventional UN TRISO ulletparticles in AM SiC matrix
 - Multiple barriers to fission gas release: TRISO, SiC matrix
 - Radiation-tolerant, oxidation-resistant SiC matrix
- High density of U (fuel) • and H (moderator) results in compact core size
 - Large ($800 \,\mu m$), dense UN kernel
 - Fabrication process allows high particle packing (up to 60%)
 - AM cog shape _ maximizes fuel volume

CAK RIDGE National Laboratory

AM SiC fuel cog during fabrication

Assembled fuel element

TCR Fuel Fabrication Process

Typical microstructure of CVI SiC surrounding coated particles (surrogates)

CAK RIDGE National Laboratory

X-ray computed tomography (XCT) provides asfabricated particle distributions to simulate effects on neutronic/thermal hydraulic performance

Image of sectioned COG COG

XCT visualization

Particle locations from XCT ster to edi

In situ monitoring during binder jet printing using Peregrine

- ORNL-developed software monitors printing process layerby-layer
- Automatically identifies defects and alerts user

Intellectual property developed by TCR is major component of U.S. industry fuel development and reactor demonstrations

BWX Technologies, Inc.

Ultra Safe Nuclear has licensed TCR intellectual property and is constructing a fuel fabrication facility in Oak Ridge, TN

Open aliele protector to adjit

Integral and separate effects irradiation testing of AM fuels and materials at ORNL, INL, and MIT

	Purpose	Separate	Integral Effects		
	-	Core and Matrix	Fuel Particle	Fuel Element	
ORNL HFIR	Steady-state dose/burnup accumulation	AM SiC AM 316L YHx	Loose UN TRISO particles (MiniFuel)	UN TRISO particles in a mini AM SiC compact (MiniFuel)	
MIT NRL	Fission gas retention at low burnup		Loose UN kernels Loose UN TRISO particles	UN TRISO particles in a mini AM SiC compact	
INL TREAT	Integral fuel performance during transient over- power			Transient pulsed irradiation of UN TRISO particles in a mini AM SiC compact	

Assembly of MITR test of integral fuel compacts

AM SiC HFIR samples HFIR-irradiated AM 316L

HFIR-irradiated UN TRISO Open slide master to edit

2.3 dpa HFIR irradiation of AM SiC

Postirradiation STEM-BF image showing black spot damage in 6H-SiC particle but no defects in CVI SiC

8

	(a)
	6H-SiC Particle
CVI-SiC Matrix	1 <u>00nm</u>

Irradiation temperature	Orientation	Characteristic strength [MPa]	Weibull modulus	Number of tests
	XY	264	8	23
Unirradiated	Ζ	274	13	7
406 ± 11.90	XY	266	9	7
400 ± 11 °C	Z	276	5	8
$(20 + 27 \circ C)$	XY	289	7	8
028 ± 27 C	Ζ	258	10	8
970 ± 71 °C	XY	283	9	7
0/9±/1 C	Z	276	21	8

Minimal change in strength or Weibull modulus after irradiation

Terrani, K. A., et al. "Irradiation stability and thermomechanical properties of 3D-printed SiC." J. Nucl. Mat. 551 (2021) 152980.

Neutron radiation effects on AM SiC thermal properties

- Initial anisotropy disappears after irradiation
- Irradiation defect resistivity (change in inverse thermal conductivity) consistent with reference CVD and NITE SiC

Temperature [°C]

Terrani, K. A., et al. "Irradiation stability and thermomechanical properties of 3D-printed SiC." J. Nucl. Mat. **551** (2021) 152980.

Neutron radiation effects on AM SiC thermal properties

• Competition between phonon scattering in highly faulted CVI regions vs. irradiation defect resistivity

Terrani, K. A., et al. "Irradiation stability and thermomechanical properties of 3D-printed SiC." *J. Nucl. Mat.* **551** (2021) 152980.

Irradiation testing of integral TCR fuel compacts

- Series of low burnup tests in MITR to evaluate fission gas retention
 - Bare UCN kernels
 - Loose UCN TRISO
 - Integral compacts with UCN TRISO in AM SiC
- Fission gas release (FGR) from UCN TRISO not expected but was observed from integral compacts with simultaneous nuclear + electrical heating and high temperature ramp rates

Summary	of	irradiation	tests
---------	----	-------------	-------

Test	Fuel	Heating	Thermal neutron fluence (10 ¹⁸ n/cm ²)	Steady-state temperatures	Typical temperature ramp rate	Fission gas release?
2PH1-BARE	Bare UCN					Yes
2PH1-TRISO	Loose UCN TRISO	Nuclear	0.03	No logged tem	perature data	
3GV-COMP1a	Compacts		1.01	131–171 °C		No
3GV-COMP1b	C1, C3,		0.14	178–236 °C	1-2 °C/min	
3GV-COMP1c	C8		1.11	175–231 °C		
3GV-COMP2	Compacts C2, C7, C10		1.09	228–365 °C, briefly >700 °C	10–11 °C/min	Yes
3GV-COMP3	Compacts C4, C5, C9	Nuclear + electrical	1.24	727–749 °C	1–4 °C/min	No
3GV-TRISO1	Loose		1.05	325–350 °C	7–8 °C/min	INO
3GV-TRISO2	UCN TRISO		1.10	670–750 °C	6–7 °C/min	

Details from test that showed FGR

- Compacts had ~1400 particles, average matrix density ~86% of theoretical, and ~50% particle packing fraction
- Fission gas sampled independently in all three capsules
- Temperature ramped quickly to ~700°C then backed down to 227–370°C (due to issues with heaters) and held for 24 hours

Sensor and

gas line leads

Thimble

Cartridge

heaters

holders

 One thermocouple also showed erratic behavior during initial temperature ramp

B

Temperature

control

gas line

Section A-A

Irradiation vehicle

details

B

CAK RIDGE

12

National Laboratory

Section B-B

Open slide ma**sutlet**dit

Post-irradiation examination

Crack propagation through coating layers

Summary of FGR measurements

Parameter	C2	C7	C10
Measured ⁸⁵ Kr release (µCi)	0.02	0.01	0.19
Calculated ⁸⁵ Kr inventory (µCi)	38	38	38
Measured ⁸⁵ Kr release (%)	0.05%	0.03%	0.50%
Calculated particle failures	51.3	25.7	494.1

Post-irradiation images of compacts with closer views of each of the four large fragments from Ci10. Laster to edit

Crack propagation

- Crack propagated through particle coating layers only in the outer region with higher matrix density
- Suggests crack can deflect around particles when matrix is porous

Implications

- FGR was clearly a result of SiC matrix cracking that propagated through the TRISO coatings, which was not expected
- The fact that the coating failures only occurred on the outer particle ring is consistent with higher matrix densities in this region

Optical images of transverse section of surrogate fuel compact

- Not observed previously when using graphite matrices or hot-pressed SiC matrices
- Suggests that strong particle/matrix interfaces may not be desirable
- Future work will focus on process modifications to prevent crack propagation through the TRISO coatings
- 15

Summary and conclusions

- The SiC AM process developed under TCR has extraordinary potential
 - Highly complex geometries
 - High-purity crystalline SiC
 - Retains radiation resistance of traditional CVD SiC
 - Demonstrated potential for integrating fuel and sensors
- However, we need to continue to understand the limitations and potential failure modes
 - CVI has limitations in maximum component thickness but this could be mitigated through proper engineering design (i.e., channels to improve infiltration)
 - Matrix density and TRISO particle/matrix interface clearly has implications on TRISO particle failure modes, including fission gas retention
- Industry interest remains high as evidenced by USNC's licensing of TCR technology and BWXT's ARDP focusing specifically on the TCR fuel form

Questions? Chris Petrie, petriecm@ornl.gov

