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TCR Fuel Fabrication Process

Preform Partial Fuel Particle and Final
Fabrication Densification SiC powder Loading Densification
(Binderjet) (CVI) ‘ (CVI)

Typical microstructure of

CVI SiC surrounding
coated particles
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X-ray computed tomography (XCT) provides as-
fabricated particle distributions to simulate effects on
nevironic/thermal hydraulic performance
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In situ monitoring during binder jet printing using Peregrine

« ORNL-developed software
monitors prinfing process layer-
by-layer

« Automatically idenftifies defects
and alerts user

¥OAKRIDGE  TCR component after binder jet (left) and CVI (right)
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Intellectual property developed by TCR is major
component of U.S. indusiry fuel development and reactor

demonstrations

a9 United States

a2 Patent Application Publication (o) Pub. No.: US 2021/0230076 A1
Petrie et al. (43) Pub. Date: Jul. 29, 2021

(54) EMBEDDING SENSORS IN 3D-PRINTED (52) US. CL

SILICON CARBIDE CPC ... C04B 37/021 (2013.01); CO4B 35/565
(2013.01); C04B 35/63 (2013.01); C04B

(71) Applicant: UT-Battelle, LLC, Oak Ridge, TN 37/042 (2013.01); GOID 11/245 (2013.01);
(us C04B 2237/62 (2013.01); CO4B 2235/3826

(2013.01); CO4B 2237/365 (2013.01); CO4B
2237/403 (2013.01); C04B 2237/408
(2013.01); CO4B 2235/6026 (2013.01)

(72) Inventors: Christian M. Petrie, Oak Ridge, TN
(US); Brian C. Jolly, Oak Ridge, TN
(US); Kurt A. Terrani, Oak Ridge, TN

ao United States

an Patent Application Publication (o) pub. No.: US 2021/0158978 Al
Terrani et al, (4 Pub, Date: May 27, 2021

(54) 3D PRINTING OF ADDITIVE STRUCTURES BATY s000 (2006.01)
FOR NUCLEAR FUELS G210 2102 (2006.01)
G20 V62 (2006.01)
(71)  Applicant: UT-Battelle, LLC, Ouk Ridge, TN (52) US.CL
(US) CIC X G21C /048 (201901 ), BIZY 1000

(2014.12); G2IC 3623 (2013.01); G21C

(72)  lnventors: Kurt A, Terrunl, Ouk Ridge, TN (US) 2002 (2013.01). BIFY S000 (2014.12)

Andrew 1. Nelson, Ouk Rudge, IN

a9 United States
a2 Patent Application Publication o Pub. No.: US 2020/0156282 Al

Terrani et al. (43) Pub. Date: May 21, 2020
(54) ADDITIVE MANUFACTURING OF (52) US.CL
COMPLEX OBJECTS USING REFRACTORY CPC oo B28B 1/001 (2013.01); B22F 7/02

MATRIX MATERIALS (2013.01); B22F 3/1021 (2013.01); B22F
3/1007 (2013.01); CO4B 35/573 (2013.01);
G21C 3/324 (2013.01); C0O4B 2235/614
(2013.01); C04B 35/52 (2013.01); B22F
2302/105 (2013.01); B22F 2998/10 (2013.01);
B22F 2301/20 (2013.01); C0O4B 2235/77
(2013.01); C04B 35/5622 (2013.01)

(71) Applicant: UT-Battelle, LLC, Oak Ridge, TN
(US)

(72) Inventors: Kurt A. Terrani, Knoxville, TN (US);

Michael P. Trammell, Knoxville, TN
(US); Brian C. Jolly, Knoxville, TN
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BWXT ARDP BANR
design will utilize TCR’s
fuel fabrication process to
achieve fuel packing
fractions significantly
higher than traditional
TRISO

BWXI

BWX Technologies, Inc.

* ULTRA SAFE NUCLEAR

3

FCM Fuel

Fully Ceramic Micro-encapsulated Fuel

Ultra Safe Nuclear has
licensed TCR intellectual
property and is
constructing a fuel
fabrication facility in Oak
Ridge, TN

Silicon Carbide Matrix




Integral and separate effects irradiation testing of AM fuels and
materials at ORNL, INL, and MIT
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2.3 dpa HFIR irradiation of AM SiC

Specimens HFIR capsule design

Inner TMs

— Retainers Specimen holder Rabbit capsule

"~ Retainer springs Centering thimbles

.
T f
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Quter TMS B Specimen assembly Specimen geometry
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Support foils Section B-B Insulator disks
Minimal change in strength or Weibull modulus after
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Terrani, K. A., et al. "Irradiation stability and thermomechanical properties of 3D-printed SIiC." J. Nucl. Mat. 551 (2021) 152980.




Neutron radiation effects on -
AM SiC thermal properties ’

 |nitial anisotropy
disappears after
iradiation

e Irradiation defect
resistivity (change
INn inverse thermal
conductivity)
consistent with
reference CVD
and NITE SiC

Terrani, K. A., et al. "lIrradiation stability and thermomechanical properties of 3D-printed

SIC." J. Nucl. Mat. 551 (2021) 152980.
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Neutron radiation effects on AM SiC

thermal properties

« Competition between phonon scattering in highly faulted

CVlregions vs. irradiation defect resistivity
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Terrani, K. A., et al. "lrradiation stability and thermomechanical properties of 3D-printed
SIC." J. Nucl. Mat. 551 (2021) 152980.
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Irradiation testing of integral TCR fuel compacts

o Series of low burnup tests
in MITR to evaluate fission

gas retention Summary of irradiation tests

— Bare UCN kernels Thermal Typical  Fission
Test Fuel Heating neutron fluence Steady-state temperature as
- Loose UCN TRISO g temperatures P S
nt | s with (10'3 n/cm?) ramp rate release?
- nhregral compdacis wi 2PHI-BARE Bare UCN Yes
UCN TRISO in AM SIiC 3 —
0ose 0.03 No logged temperature data
.. 2PHI-TRISO UCN
« Fission gas release (FGR) TRISO  Nuclear
from UCN TRISO not 3GV-COMPla Compacts 1.01 131-171 °C No
expected buf was 3GV-COMPIb Cl, C3, 0.14 178-236°C  1-2 °C/min
observed from integral 3GV-COMPlc  C8 1.11 175-231 °C
Compoc’rs with Compacts 278365 °C
simultaneous nuclear + 3GV-COMP2 €2, C7, 1.09 briefly >700 oc J10-11 °C/min
electrical heating and €10
hiah tempberature ram Compacts Nuclear
19 P e 3GV-COMP3 (4, C5, + 1.24 727-749 °C 1—4 °C/min
rates C9 electrical No
3GV-TRISO1 Loose 1.05 325-350 °C 7-8 °C/min
UCN :
3GV-TRISO2 TRISO 1.10 670-750 °C 6—7 °C/min
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Details from test that showed FGR | = / A o
5 | | v ¥ s
« Compacts had ~1400 particles, average matrix density %500'“ A N A 152
~86% of theoretical, and ~50% particle packing fraction ¢ 400- 48
e Fission gas sampled independently in all three capsules %;300- 3 ;‘
£ ©
« Temperature ramped quickly to ~700°C then backed ©200{ | e 128
down to 227-370°C (due to issues with heaters) and 100, . - - — ror
held for 24 hours ' | | —— T.C10
« One thermocouple also showed erratic behavior 00 05 1.0 15 20 25
during initial temperature ramp Time (hours)
Temperature transient at start of test
Irradiation vehicle Sensor and Welded Graphitc ~ Fission gas

details gas line leads ~ Thimble sweep lines  Fuel compacts

capsules spacers

-‘""*i,;_
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Crack propagation through coating layers

Summary of FGR measurements

Parameter C2 C7 C10
Measured 3°Kr release (uCi)  0.02  0.01  0.19
Calculated ®Kr inventory (uCi) 38 38 38

Measured *Kr release (%)  0.05% 0.03% 0.50% Post-irradiation images of compacts with closer views of
Calculated particle failures 51.3  25.7 4941 each of the four large fragments from C10.




Crack propagation

» Crack propagated through particle coating
layers only in the outer region with higher
matrix density

» Suggests crack can deflect around particles
when matrix is porous

Cracks
through
coating
layers (layers
observed)

Crack
propagation |
Crack deflection

around particles
(no layers observed)

Higher magnification

SiC image showing crack

propagation through
compact C7

Buffer
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Implications

« FGR was clearly a
result of SiC matrix
cracking that
propagated through
the TRISO coatings,
which was not
expected

* The fact that the
coating failures only
occurred on the
outer particle ring is
consistent with
higher matrix
densities in this 1S R W | 8 R gy
region Optical images of transverse section of surrogate fuel compact

— Not observed previously when using graphite matrices or hot-pressed SiC matrices
— Suggests that strong particle/matrix interfaces may not be desirable

- Future work will focus on process modifications to prevent crack propagation through the TRISO
coatings




Summary and conclusions

e The SIC AM process developed under TCR has extraordinary potential
- Highly complex geometries
— High-purity crystalline SiC
- Retains radiation resistance of traditional CVD SiC
- Demonstrated potential for integrating fuel and sensors

e However, we need to continue to understand the limitations and
potential failure modes

— CVI has limitations in maximum component thickness but this could be mitigated
through proper engineering design (i.e., channels to improve infiltration)

— Matrix density and TRISO particle/matrix interface clearly has implications on TRISO
particle failure modes, including fission gas retention

» Industry interest remains high as evidenced by USNC's licensing of TCR
technology and BWXT's ARDP focusing specifically on the TCR fuel form
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