

DOE Microreactor Program

Heat Removal and Validation Studies

Technology Maturation Panel

Microreactor Program Virtual Workshop August 18, 2020 Holly Trellue, LANL, Technical Area Lead (TAL) for Technology Maturation, National Technical Director: Jess C. Gehin, INL Federal Manager: Tom Sowinski, DOE-NE

Advance technology to effectively remove heat from the fuel/core block and convert to electricity

- Advance technology to effectively remove heat from the fuel/core block and convert to electricity.
- Demonstrate heat removal for single and integrated components through high ۲ fidelity experiments.
- Generate performance data that supports design and validation of Nuclear Energy Advanced Modeling and Simulation (NEAMS) codes.
- Research more efficient heat exchangers/power conversion units.
- Initial focus is on heat pipe technology (below) as other advanced reactor programs have studied gas and liquid coolant.

Current Research

- Enhance heat pipe efficiency:
 - 1. Increase power production with doubleended heat pipes
 - 2. Decrease annular pore radius in wick designs (below).

- Evaluate multiple heat exchanger designs:
 - shell and tube,
 - printed circuit,
 - gas-cooled microchannels, and
 - bayonet-type.

Gas-Cooled Microchannel Heat Exchanger Development

3D printed airfoil hxgr

Pictures Courtesy of Bob Reid, LANL, and Donna Guillen, INL

Single Heat Pipe Nonnuclear Experiments in MAGNET

- 7-hole test articles have a heat pipe in the center and 6 heaters in surrounding holes.
- Heat flux for cartridge heaters is 3.8 W/cm².
- Characterize high-power heat pipe performance during startup and steady-state conditions.
- Perform calorimetric measurements with water-cooled gas gap calorimeter.
- Determine heat pipe temperatures and other operational limits.
- Advanced manufacturing creates unconventional geometries of structural an heat removal components: determine performance of both additively and traditionally manufactured material.

heat pipe

860

 cooling shroud-

quartz tube /

Pictures Courtesy of TJ Morton

and Jim O'Brien, INL, and Colt

Montgomery, LANL

high-temperature insulation

hex core block

with internal TCs

instrumentation / power feedthroughs

inert gas inlet/outlet

energy.gov/ne

Larger nonnuclear test article for heat pipe performance/validation

- 37 heat pipes and 54 heaters to simulate fuel rod performance.
- ~75 kWt nonnuclear demonstration is planned.
- Determine benefits of additive manufacturing and joining techniques for fabrication of test articles.
- Demonstrate heat pipe to heat exchanger interface.
- Heat pipes have annular gap design, stainless steel-sodium system.
- Throughput (heat pipe limits)
 - 600 °C, up to 4 kW/heat-pipe
 - 650 °C, up to 7.5 kW/heat-pipe
 - 700 °C, up to10 kW/heat-pipe

Pictures Courtesy of Bob Reid, Colt Montgomery, John Carpenter, LANL

Heaters in Nonnuclear Demo as 'Fuel Rods'

Upcoming Work

- Perform aforementioned test article experiments.
- Research/develop gas- and/or liquid-cooled test articles.

loop

6

- Demonstrate integration with a Power Conversion Unit using MAGNET.
- Finish advanced heat pipe tests.
- Evaluate performance of different heat exchangers. MAGNET

Clean. Reliable. Nuclear.