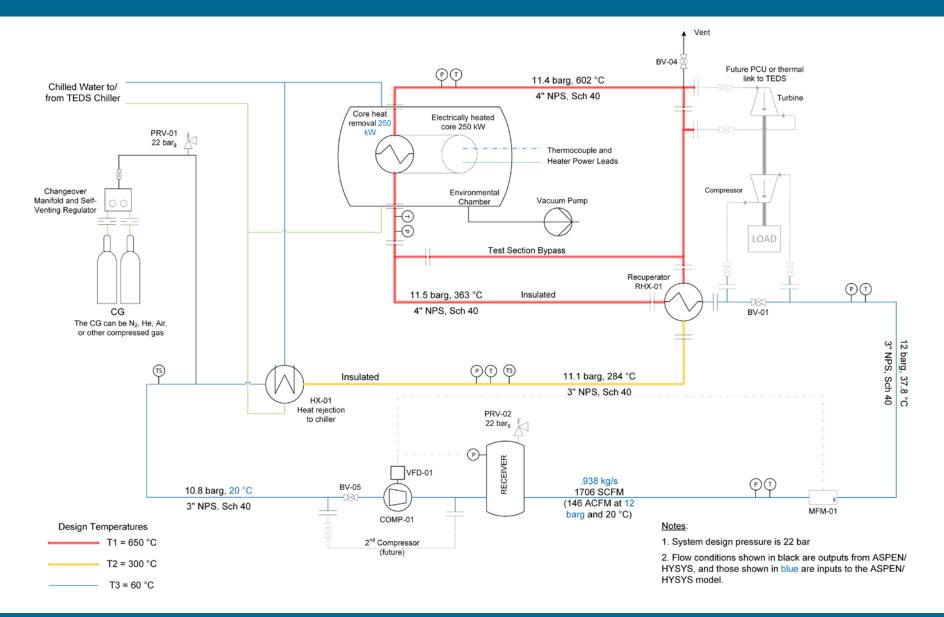


DOE Microreactor Program

Non-Nuclear Testing (MAGNET Facility)


GAIN-EPRI-NEI Microreactor Program Workshop August 18, 2020 T.J. Morton (INL) Terry.Morton@inl.gov

Microreactor Agile Non-Nuclear Experimental Test Bed (MAGNET)

Objectives

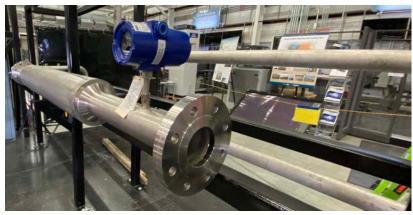
- Provide a general-purpose, non-nuclear test bed to evaluate microreactor designs
- Provide detailed thermal-hydraulic, performance data for prototypical geometries and operating conditions
 - Test article/flow loop temperature-time histories during start up, shut down, steady state, and offnormal operations
 - Displacement and temperature field data for potential design performance verification and accompanying analytical model validation
- Demonstrate integration of a power conversion unit
- Demonstrate applicability of advanced manufacturing techniques, such as additive manufacturing and diffusion bonding for core and heat removal section designs
- Identify and develop advanced sensors and power conversion equipment including instrumentation and controls for autonomous operation
- Enhance readiness of public stakeholders, particularly DOE laboratories and US NRC, to design, operate, and test high-temperature reactor components

MAGNET P&ID

MAGNET Specifications

- Heat Removal Capacity: 250 kW (initial configuration supports 125 kW)
- Design Pressure: 22 bar
- Design Temperature: See P&ID
- Coolant: Compressed N₂ or He (or dry air if desired)
- Final Heat Sink: Chilled water (50% ethylene glycol) at 44 ° F
- Closed circuit cooling
- Expandable with potential to add power conversion unit (PCU) or HX interface with other system
- Recuperative HX (printed-circuit style HX)

Integrated Energy Systems Laboratory



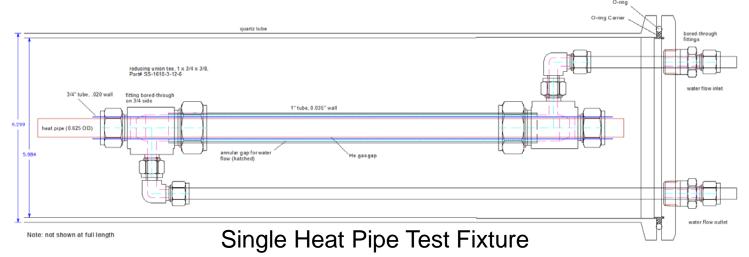
IES Lab Rendering

Program Activities and Accomplishments

MAGNET construction in progress

- Vacuum chamber expected in house early September
- All major components installed by 09/30 (expected)

MFM-01


MAGNET Skid and Pipe Racks

HX-01

Single Heat Pipe Testing

A single heat pipe test article will undergo preliminary testing in a temporary test fixture while MAGNET construction is under way. Results and feedback from this testing will guide testing in MAGNET.

- Water cooled shroud across a gas gap a wire wrap will be used to center the heat pipe inside calorimeter tube
- Water cooling can support high heat removal rates greater than the heat pipe rating
- Heat transfer across gap is a combination of radiation plus conduction conduction is dominant
- Steady-state heat pipe temperature and heat flux can be varied by using He or Ar gas or by varying the length of the condenser section

Single Heat Pipe Testing

Single heat pipe test stand assembly in progress

- Instrumentation installation in progress
- Final plumbing by end August
- Testing to begin in early September

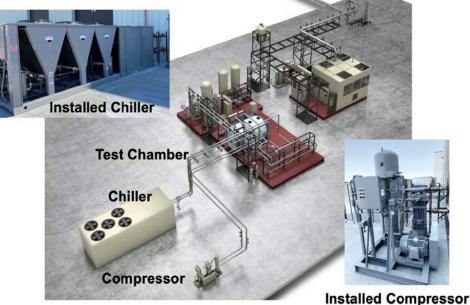
Quartz tube allows tests in vacuum or inert gas environments

Test stand and power and instrumentation cabinet

Test stand gas/vacuum/cooling end and control computer

Future Work Plans and Priorities

- Complete single heat pipe testing at BCTC
- Test single heat pipe test article in MAGNET starting mid-December
- Prepare MAGNET for 37 heat pipe test article
- Integrate MAGNET with thermal energy distribution system (TEDS) in FY21


 collaboration with Integrated Energy Systems
- Integrate Power Conversion Unit collaboration with Sandia
- Prepare MAGNET modifications based on feedback from testing on 37 heat pipe test article

Chamber bottom with supports and hydra-cooling channels

Chamber endwall in fabrication at Kurt Lesker showing hydracooling channels

Clean. Reliable. Nuclear.