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Summary 
This work is aimed at providing thermophysical properties of molten NaCl-PuCl3-AmCl3, which is 

highly relevant to molten salt reactors. First, ab initio molecular dynamics (AIMD) simulations were 

conducted to generate high-fidelity reference datasets, on which a machine learning potential was 

trained. This potential, designed to preserve AIMD-level accuracy while allowing for extensive 

sampling, was then used in molecular dynamics simulations to calculate various thermophysical 

properties of the system. Specifically, the density, thermal expansion coefficient, heat capacity, 

viscosity, and thermal conductivity were evaluated. Moreover, temperature-dependent 

relationships for the density, thermal expansion coefficient, and viscosity were established. In 

addition to thermophysical calculations, structural properties of the mixture were also analyzed.  
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Acronyms and Abbreviations 
AIMD  Ab initio molecular dynamics  

Cp  Constant pressure heat capacity  

DFT  Density functional theory  

GPW   Gaussian plane wave  

H  Enthalpy  

LAMMPS  Large-scale Atomic/Molecular Massively Parallel Simulator 

MLIP  Machine learning interatomic potential  

MS  Molten salt 
MSR  Molten salt reactor  

RMSEs  Root mean square errors  
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1.0 Introduction 
In molten salt reactors (MSRs), minor actinides are closely related to advanced fuel cycles, 

contributing to both energy production and long-term waste reduction. Americium trichloride 

(AmCl₃), in particular, is highly relevant to chloride-based MSR systems. Significant progress has 

been made in advancing the fundamental understanding of AmCl₃ through multiple research 

avenues. At the molecular level, electronic structure theory has been used to investigate its gas-

phase complexes and solid-state properties, providing insights into bonding, electronic, and 

structural behavior (Vetere et al. 2004; Li et al. 2023). Experimentally, the synthesis of AmCl₃ has 

received increasing attention, with several alternative strategies being employed (Hayashi et al. 

2008; Kersten et al. 2022; Chevreux et al. 2024). In parallel, the electrochemical behavior of 

AmCl₃-bearing molten salts (MSs) has been investigated (Filatov et al. 2023; Serp et al. 2006), 

highlighting its potential role in actinide separation, redox control, and MSR applications. All 

together, these studies underscore the importance of AmCl₃ across theory, synthesis, and applied 

electrochemistry, while also pointing to the need for further investigation of its thermophysical 

properties in technologically relevant environments. Thus far, the eutectic composition of the 

binary NaCl-AmCl3 system has been predicted to at 40-45 mol% AmCl3. (Toni Y Karlsson and 

Pinto 2024) Very limited thermophysical property data for AmCl₃-based MSs are currently 

available in the literature. The lack of fundamental data will pose barriers to reactor safety 

assessments and fuel cycle optimization. Addressing this gap is essential for enabling the reliable 

deployment of chloride-based MSR technologies. 

In this work, by leveraging recent advances in machine learning interatomic potentials (MLIPs), 

we investigated key thermophysical properties of a NaCl-PuCl3-AmCl3 ternary MS with 

approximately 31 mol% PuCl3 and 14 mol% AmCl3, including the liquid density, thermal 

expansion, heat capacity, viscosity, and thermal conductivity. The use of machine learning-based 

potentials allows for accurate, large-scale molecular dynamics simulations at a fraction of the 

computational cost of traditional ab initio methods, thereby enabling reliable predictions of 

temperature-dependent trends. This approach not only provides quantitative estimates of 

fundamental properties but also helps gain new insights into the underlying atomic-scale 

mechanisms governing thermal, transport and structural behavior in complex molten systems. 
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2.0 Methods 
As demonstrated in our previous works as well as in the literature, MLIPs can significantly 

accelerate atomistic modeling of MS systems (Nguyen et al. 2023; Nguyen et al. 2025; Xu et al. 

2023). Studies of actinide-bearing MSs stand to benefit substantially from the use of MLIPs.  High-

accuracy methods based on electronic structure theory, such as ab initio molecular dynamics, 

provide critical insight but are computationally prohibitive for the large-scale simulations required 

to capture transport properties complex liquids. MLIPs, by contrast, can reproduce ab initio 

accuracy at a fraction of the computational cost, enabling simulations that are both extensive and 

predictive, making them especially valuable for actinide-bearing systems, where experimental 

data are scarce and direct measurements are often limited.  

To create a MLIP for the NaCl-PuCl3-AmCl3 system, the following workflow was employed. We 

began by conducting AIMD simulations to generate reference datasets, including atomic 

coordinates, energies, and forces, for the system. These datasets were then used to train a MLIP 

capable of reproducing the accuracy of AIMD. Finally, the trained potential was applied in large-

scale molecular dynamics simulations, enabling the efficient calculation of key thermophysical 

properties of the mixture. 

2.1 Ab initio molecular dynamics  

 
AIMD simulations were carried out using CP2K (Kühne et al. 2020). The energy was calculated 

with spin-polarized revPBE-vdW (Zhang and Yang 1998; Dion et al. 2004) density functional 

calculations.  The Gaussian and Plane-wave (GPW) hybrid basis set scheme (Lippert, Hutter, 

and Parrinello 1997) was employed, with the double-zeta valence polarized (DZVP) (Doudin et 

al. 2019; Lu et al. 2021) Gaussian basis sets and a plane wave cutoff of 600 Ry.  The GTH 

pseudopotentials (Lu et al. 2021; Goedecker, Teter, and Hutter 1996) were used with the number 

of valence electrons being 1 for Na, 16 (Pu), 17 (Am) and 7 (Cl). The accuracy of this density 

functional theory (DFT) approach is demonstrated below for solid state systems. The initial 

structure and density of the system at each temperature were prepared using molecular dynamics 

based on the polarized ionic model (Salanne and Madden 2011). AIMD simulations were then 

carried out with isothermal-isobaric ensemble (NPT) in which the pressure (1 bar) and 

temperature were controlled with the Nose-Hoover chain barostat/thermostat (Martyna, Klein, and 

Tuckerman 1992). A 2-fs time step was used.  
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2.2 Machine learning interatomic potentials 
 

In this work we employed the DeepMD potential model (Zeng et al. 2023) implemented in the 

DeePMD-kit (Zeng et al. 2023) to train MLIPs. In this approach, the energy of the system is 

given by  

𝐸 =% 𝐸!
!

=% 𝑁(𝐷!(𝑹!))
!

 

where 𝐸! is the local atomic energy determined by atom i and its neighbors within a cutoff 𝑅", the 

descriptor 𝐷! is the feature matrix encoding the surrounding environment and is fed to a deep 

neural network N which returns the energy 𝐸! . 𝑹𝒊  is the set coordinates of all atoms in the 

environment, 𝑹! = ,𝒓!$ ≡ 𝒓! − 𝒓$0.  

The network is trained by minimizing the loss function  

ℒ = 𝑝%|∆𝐸|& +
𝑝'
3𝑁

% |∆𝐹!|&
!

 

in which ∆𝐸 and ∆𝐹 are the deviation of the potential energy and atomic forces between the 

reference AIMD and predicted data, respectively; and pE and pf are tunable pre-factors.  

Here we used a radial cutoff and a smooth cutoff of 7.0 and 6.5 Å, respectively. The pre-factor pE 

was set to increase from 0.02 to 1 and pf was set to decrease from 1000 to 1. We employed 

20,40,80} embedding and 250,250,250} fitting network. 

From 46000 AIMD frames, 37000 frames were randomly chosen to create a training set, similarly, 

4500 frames for a validation set and 4500 frames for a test set.  

2.3 Molecular dynamics based on machine learning interatomic 
potentials  
 

Machine learning interatomic potential molecular dynamics (MLIPs) were conducted using Large-

scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) (Thompson et al. 2022).  To 

calculate the liquid density we employed the NPT ensemble in which the pressure P and 

temperature T were maintained with Nosé–Hoover barostat/thermostat (Evans and Holian 1985).  

The time step was set at 1 fs. Viscosity calculations were performed using the NVT ensemble 

where the temperature was controlled with the Nosé–Hoover thermostat.  

2.4 Atomic systems 
 

Here we employed cubic boxes consisting of 110 Cl, 32 Na, 18 Pu, and 8 Am atoms, Figure 1, 

corresponding to the composition of approximately 55 mol% NaCl, 31 mol% PuCl3, and 14 mol% 
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AmCl3. This is equivalent to adding about 14 mol% AmCl3 to the eutectic binary system of NaCl 

and PuCl3.  

 

 
Figure 1. A simulation box with Cl in green, Na in yellow, Pu in orange, and Am in grey. 

 
 
 



PNNL- 38386  
 

Results 5 
 

3.0 Results  
3.1 Solid state systems  
 

 
Figure 2. Solid state structures of three solids with chlorine in green and metal in grey/orange.   

To test the accuracy of the DFT method in use, we first calculated the lattice constants of three 

solids: NaCl, PuCl3, and AmCl3. While solid AmCl3 and PuCl3 adopt the P63/m, NaCl has the Fm-

3m space group, Figure 2.  A supercell equivalent to 2⨉2⨉4 and 3⨉3⨉3 primitive unit cells was 

used for AmCl3/PuCl3 and NaCl, respectively. Only the Gamma point was used to sample the 

Brillouin zone in DFT calculations. In the actinide chloride systems, the ferromagnetic spin 

configuration appeared to be slightly more stable than the antiferromagnetic one. Table 1 shows 

that these calculated parameters agree well with experimental data, indicating the accuracy of 

the DFT method employed in this work.  

Table 1. Calculated and experimental lattice constants and errors. Experimental data for 
actinide chlorides (Asprey, Keenan, and Kruse 1965; Burns, Peterson, and Stevenson 
1975) and sodium chloride (Froyen and Cohen 1986) taken the literature.  

 
AmCl3 PuCl3 NaCl 

Cal. Exp. Err.(%) Cal. Exp. Err.(%) Cal. Exp. Err.(%) 

|a|=|b| (Å) 7.337 7.390 0.7 7.330 7.394 0.8    

|c| (Å) 4.234 4.234 ~0.0 4.296 4.234 1.3    

|d| (Å)       5.665 5.640 0.4 
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3.2 Machine learning interatomic potential training   
 
 
The root mean square errors (RMSEs) for different data sets, shown in Figure 4 and Table 2, 

provide a quantitative measure of the accuracy of the trained interatomic potential. Compared to 

the AIMD reference data sets, the observed deviations are small: the energy differences are 

about 1 meV per atom, while the force differences are approximately 60 meV/Å. These values 

are well within the range typically considered acceptable, demonstrating that the trained 

interatomic potential can reliably reproduce AIMD-level accuracy. 

 

 
Figure 3. Potential energy calculated using the trained MLIP for different data sets versus AIMD 

data.   

 

Table 2. Error of the energy (meV/atom) and force (meV/ Å) of the MLIP vs AIMD for different 
datasets 

 Training set Validation set Test set 

Energy RMSE 1.05 1.08 1.06 

Force RMSE 59.5 59.6 59.6 
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3.3 Density 
 
 
The density was calculated as 

𝜌 =
𝑚
𝑉  

with m being the total atomic mass and V being the equilibrium volume of the simulation box. 

Since the mass m is independent of temperature, whereas the volume V changes with 

temperature, our task reduces to determining V at given temperatures. This was accomplished 

by using the PNT ensemble as mentioned in the method section. Figure 4 shows the variation of 

liquid density as a function of temperature, demonstrating the expected trend of decreasing 

density with rising temperature. The numerical data were fitted to a linear relationship, resulting 

in the equation  𝜌 = 4.54 − 9.4	 × 10( × 𝑇, 𝑅 = 0.999.  

 

 
Figure 4. Temperature dependence of density.  

 

 

3.4 Thermal expansion coefficient     
 
The decrease of the density with temperature reflects the thermal expansion of the system. The 

thermal expansion was evaluated as  

𝛽 =
1
𝑉 F
𝜕𝑉
𝜕𝑇H)

= −
1
𝜌 F
𝜕𝜌
𝜕𝑇H)

 

which was calculated directly from the density data. Figure 5 shows that the thermal expansion 

is relatively small in magnitude; nevertheless, it increases progressively as the temperature 
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rises. This is indicative of enhanced structural flexibility at higher temperatures. Fitting the 

numerical data to the linear equation leads to 𝛽 = 1.5	10*( + 6	 × 10*+	𝑇 

 

 
Figure 5. Thermal expansion coefficient as a function of temperature.  

 

3.5 Constant pressure specific heat capacity Cp  
 

We evaluated constant pressure specific heat capacity Cp by using the variation of the enthalpy 

with temperature: 

𝐶! = &
𝜕𝐻
𝜕𝑇*!

≈
Δ𝐻
Δ𝑇  

Figure 6 shows that the enthalpy varies linearly with temperature over the examined range of 

temperature. It is thus straightforward to evaluate the specific heat which amounts to 0.55 J/gK  

which is slightly lower than measured values (~0.6 J/gK) of the binary NaCl-PuCl3 with 36 mol% 

PuCl3 (Toni Y. Karlsson et al. 2023), which has a lower actinide content.  
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Figure 6. Temperature dependence of enthalpy.     

 

 

3.6 Viscosity   
 

We calculated the viscosity by using the Green Kubo approach  

𝜂 =
𝑉
𝑘"𝑇

/ 〈𝑃#$(0)𝑃#$(𝑡′)〉𝑑𝑡′
%

&
 

in which V denotes the volume of the simulation box, kB is the Boltzmann constant, T is the 

temperature, Pxy is an off-diagonal component of pressure tensor, and the angle brackets 〈…〉 

indicate an ensemble average. A major challenge in this calculation is the poor convergence of η 

as a function of time. To mitigate this, several independent simulations were carried out at each 

temperature, and their results were averaged, as demonstrated in Figure 7(a).  

Figure 7(b) shows the viscosity decreases rapidly with the temperature. Fitting the numerical data 

to an Arrhenius-type equation a functional relationship between η and T  

𝜂 = 𝐴 × 𝑒"/(!) 

we obtained 0.0044 mPa.s and 0.383 eV for parameters A and B, respectively.  
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Figure 7. Viscosity as a function of time from several independent simulations (grey) and the 

averaged data (green) at 1150 K, (b) Temperature dependence of viscosity.    

 

3.7 Thermal conductivity  
 

We used the variant of Muller-Plathe reverse perturbation method (Plimpton 2014) to evaluate 

the thermal conductivity  

𝜅 =
Δ𝑄

2	𝐴	Δ𝑡 ×
1

Δ𝑇/Δz 

in which Δ𝑄 denotes the amount of heat added to a “hot” region and removed from a “cold” region 

along the z direction (Figure 8(a)), A is the cross-sectional area of the simulation box in the xy-

plane, 1/Δ𝑡  is the frequency at which Δ𝑄  is added or removed; and Δ𝑇/Δz  represents the 

temperature gradient along the direction from the hot to the cold regions. In our thermal 

conductivity calculations, the cubic simulation box described above was extended by replicating 

it three times along the z-direction. Figure 8(b) shows linear changes of the temperature between 

the hot and cold regions which allow for evaluation of the gradient.  

 

 

(a) (b)



PNNL- 38386  
 

Results 11 
 

 
Figure 8. (a) Schematic illustration of the “hot” and “cold” regions along the z direction under 

periodic boundary conditions, (b) The variation of temperature along the z direction, (c) 
Theral conductivity at different temperatures.    

Figure 9 shows that (i) the thermal conductivity of the system is in the 0.2-0.3 (W cm-1 K-1) range 

and (ii) it decreases with the temperature.  The thermal conductivity of this system is lower than 

that of pure NaCl, which has been measured to be 0.4-0.5 (W cm-1 K-1) (Harada et al. 1992). 

Understandably, adding more heavy atoms would reduce vibrational frequencies in the system, 

lowering the thermal conductivity. 

 

 
Figure 9. Thermal conductivity at different temperatures. 
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3.8 Structural properties  
 

To understand how metal ions interact with the counterion Cl⁻, we calculated the radial distribution 

functions (RDFs), g(r), for cation–anion pairs in the system at 1200 K (Figure 10). The positions 

of the first peaks in g(r) indicate that the Am–Cl and Pu–Cl bond distances are almost the same 

(2.73 Å), and both are slightly larger than the Na–Cl bond distance (2.71 Å). The RDFs also 

suggest that the Na–Cl interaction is weaker than the interactions of Am–Cl and Pu–Cl. This is in 

part due to the charge difference of the metal ions. The Cl⁻ coordination number (i.e., the 

ensemble-averaged number of chloride ions in the first coordination shell of each cation is 7.0 for 

Pu, 7.1 for Am, and 6.2 for Na. 

 

 
Figure 10.  Radial distribution functions of cation-anion pairs. 
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4.0 Concluding remarks  
Using molecular dynamics, we calculated the density, thermal expansion, specific heat capacity, 

viscosity, and thermal conductivity of a ternary system of NaCl-PuCl3-AmCl3 with approximately 

31 mol% PuCl3 and 14 mol% AmCl3. Ab initio molecular dynamics was first employed to generate 

datasets used for training an accurate machine learning interatomic potential that allowed for 

extensive sampling of the system. Linear equations for the temperature dependence of the 

density and thermal expansion were determined. The viscosity was found to decrease 

exponentially with increasing temperature. Next, thermal conductivity was calculated, showing a 

decline with temperature. Structural properties were finally calculated to understand fundamental 

interactions between ions. This work provides the first evaluation of the thermophysical properties 

of an important molten mixture, AmCl3-PuCl3-NaCl, which is relevant to fast spectrum molten salt 

reactors. Finally, we will be able to compare calculated data in this report with experimental data 

being determined at Idaho National Laboratory, and this will be presented in a peer-reviewed 

journal article planned for FY 2026.  
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