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SUMMARY 

As compared to conventional nuclear reactors, microreactors have the potential to significantly reduce 
construction timelines and capital costs, decreasing the barriers for advanced nuclear reactor technologies. 
However, the lower power output of these microreactors (typically < 20 MWe) creates challenging 
economics if operation and maintenance costs cannot be sufficiently reduced. The compact size of these 
designs presents an opportunity for comprehensive in-situ structural health monitoring to provide real-
time feedback in order to reduce operational costs associated with maintenance and downtime. Many 
microreactor concepts use graphite for both in-core neutron moderation and as a structural material, 
which has typically required some form of periodic and laborious inspection.  

This report provides a description and assessment of recent work with graphite to couple acoustic-based 
experimental measurements and characterization with machine learning models to mature structural 
health monitoring capabilities and generate benefits for the nuclear microreactor industry. With resilient 
embedded sensors in development in other programs funded by the US Department of Energy’s Office of 
Nuclear Energy and elsewhere, the work described herein builds upon previously funded efforts to mature 
non-destructive testing technology that relates measured vibrational signatures to structural changes, 
using a combination of new experimental measurements and machine learning processing. 

Building on past successful demonstrations of predictive workflows to identify structural changes in a 
hexagonal stainless steel test article with excellent acoustic propagation, we first performed baseline 
characterization on graphite samples with canonical geometries to ensure compatibility and confidence in 
the applied techniques for a material with distinctly different mechanical properties. In contrast to efforts 
in previous years, we worked exclusively with unidirectional vibration data that is more comparable to 
those expected from the existing embedded sensor technologies which are suitable for deployment in a 
reactor setting. Established acoustic and modern machine-learning-based characterization approaches 
were applied to the resulting datasets from these simple geometries. Both approaches were found to be 
highly capable of detecting even small geometric irregularities amongst nominally identical samples. As 
such, we then moved to testing these approaches for detection of artificial local stress perturbations 
introduced into a more complex geometry: a hexagonal block with drilled holes. 

A main outcome of this work is that a generalizable ML workflow can be used to detect and predict the 
characteristics of small artificial anomalies in a graphite component with a relevant geometry. While this 
work was performed using surficial vibration data, we expect the approach to be flexible and viable for 
other monitoring scenarios, such as those with different arrangements or types of sensor arrays. As 
compared to previously funded efforts, an existing ML workflow based on neural networks was enhanced 
through the addition of recently developed Fourier neural operators. As applied to previously collected 
and new vibration datasets, prediction accuracies of anomaly characterizations were greatly improved 
with minimal added computational cost. As trained on small durations of vibration data (tens of seconds) 
collected over a realistic number of locations, the model was able to reliably determine the presence of a 
subtle stress anomaly and begin to provide location estimates. Such an approach is likely to be viable for 
more relevant reactor damage scenarios for graphite components, such as progressive crack growth or 
creep. 
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 Introduction 

Microreactors are compact nuclear energy systems designed for versatility and portability, where extreme 
operating conditions are likely to subject their components to high temperatures, radiation, and fatigue. 
Ensuring safe and reliable operation in such conditions with minimal downtime for inspection would 
reduce operating costs to make the technology more economically viable. This provides motivation for 
the development and implementation of non-invasive techniques for early detection of structural defects, 
especially those which are scalable to provide a level of comprehensive monitoring that is not feasible 
within larger and more complex reactor designs. 

Since the first artificial nuclear reactor (Chicago Pile-1), graphite has been a key reactor material due to 
its neutron moderating properties, low cost, and high thermal stability. Many commercial designs since 
have utilized graphite as a dual-purpose material which also provides structure within a core assembly. As 
a quasi-brittle material, reactor-grade graphite has been extensively studied to understand how damage 
can accumulate due to dimensional changes from the effects of anisotropic stress and radiation damage 
[1–5]. These studies have been used to develop 3D damage models, such as those predicting fracture 
propagation due to asymmetric neutron flux [6]. Graphite structural material is a common element of 
many proposed microreactor designs. However, inspection of graphite reactor components has typically 
required their physical removal and some form of visual or enhanced imaging. As this is not compatible 
with the remote and/or semi-automated operational use cases that have been proposed for microreactors, 
non-invasive technologies that can provide enhanced or early indications of structural changes within 
graphite components are desired. 

In FY25, Instrumentation and Sensors work within the Technology Maturation technical area of the 
Microreactor Program (MRP) at Los Alamos National Laboratory (LANL) focused on non-destructive 
vibration-based inspection of bulk graphite samples for defect characterization, aiming to perform 
structural health monitoring (SHM) at the component level. We conducted experiments on graphite using 
a combination of experimental modal vibration testing and machine-learning (ML) data analyses to test 
and validate experimental conditions, progressing the approach towards potential deployment in future 
microreactor testbeds and designs. This work builds on techniques developed for comparable stainless-
steel components, where previous MRP-funded work on damage characterization for an additively 
manufactured 316L stainless steel test article yielded ML predictions of artificially modified structural 
states that were up to 90% accurate [7]. Results presented within describe significant prediction 
improvements produced by small changes to an existing ML workflow and suggest compatibility of this 
workflow for SHM in graphite components. 

 

 Sample descriptions 

Graphite samples procured for testing were all composed of high-strength isotropic material, comparable 
with that used in numerous operational and proposed reactor designs [8–10], making for valid vibrational 
and elastic responses. While the grades of graphite differed slightly across the tested samples, all had 
similar properties: fine-grained (typical grain sizes of 10 – 13 μm) and high density (1.82 – 1.85 g/cm3), 
with typical porosities around 10% and Young’s moduli of about 11 GPa.  

Graphite test samples consisted of a set of eight 6-cm diameter machined spheres (Tokai grade G347) 
similar to those acoustically inspected in a recent study [11], a set of four 25.4 x 305 mm (1” x 12”) 
cylindrical rods (Bar-Lo grade B325), and last—to enable testing on a relevant and complex geometry—a 
monolithic hexagonal block (Mersen grade 2124) with 19 equidistant and equal-diameter holes machined 
through its length [12]. 
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 Methods 

 Experimental Approach 

Three primary acoustic measurement procedures were used for ML-aided characterization: resonant 
ultrasound spectroscopy (RUS), mode shape imaging, and time-domain response. In all procedures, 
vibration measurements were made using a Polytec fixed single-point VibroFlex QTec laser Doppler 
vibrometer (LDV; short wavelength infrared) coupled with a two-axis scanning mirror galvo system 
(Thorlabs) to enable the laser to be both precisely aimed and rapidly rastered across a sample for imaging 
surface displacements. We used a bare lead-zirconate-titanate piezoelectric transducer (2mm x 12.7 mm 
disc) as the vibration excitation source, in dry contact with each of the samples, with a 20x gain Tegam 
amplifier connected in-line to the function generator to ensure sufficient signal-to-noise across a broad 
range of input frequencies. For testing, the hex block was laid onto one of its long faces with a flat piece 
of open-cell foam between the sample and benchtop to isolate it from surrounding vibration sources. The 
spheres and rods were supported in a tripod configuration to enable repeatable boundary conditions 
between samples, with the transducer forming one leg of the tripod and rounded bolt heads for the other 
two. All supports were attached to the same small optical breadboard with an open-cell foam underlay. 

RUS measurements were used to establish baseline elastic behavior for the sample under highly 
controlled conditions, with the response of the samples measured using a swept-sine excitation from the 
established Resonant Inspection and Transducer Acoustics (RITA) software. Identified peaks in the 
frequency spectrum were then confirmed to be resonance modes of the samples using experimental modal 
analysis, whereby one face of the sample was rapidly scanned by the laser while the sample was excited 
at a series of resonances frequencies, producing an image of the mode shape that could be compared to 
modeled predictions using finite-element analysis (FEA, COMSOL Multiphysics v6.2).  

The time-domain vibration response of the samples under a steady-state noise excitation provided the raw 
data inputs for training the ML model to make predictions of structural condition. These datasets were 
collected using a custom LabView interface that synchronized excitation and measurement timings, 
enabling repeatable user-defined waveforms to be sent into the sample via the transducer, with the LDV 
measuring at discrete points on the outer surface of the samples. As in previously funded work on this 
topic, we used a white-noise signal for excitation to better replicate the broadband vibration sources that 
might be expected in a passive SHM deployment, where no purpose-built excitation source is required to 
perform a structural analysis. A typical measurement at a single location during sustained noise excitation 
generated an amplitude time series with five million data points, collected at 250 kHz over 20 seconds. 
The chosen sampling rate was partially informed by a simple sensitivity study on hex block data which 
showed that, all else being equal, the revised ML model used in this work (see Section 4) trained more 
slowly when given datasets containing higher frequencies. 

Experimental work was designed to produce large quantities of vibrational data on pristine and defective 
graphite samples in order to provide enough training examples for an ML model to make successful 
predictions of defect characteristics on unseen data. Towards this goal, we first performed testing and 
elastic characterization to understand batch variability and refine testing protocols. This consisted of 
acquisition and analysis of vibration data obtained at a single, consistent point across a set of samples, as 
well as the aforementioned mode shape imaging as needed. 

Upon completion of this initial testing, an experiment was designed to generate structural anomalies 
within the hex block. To better allow for repeated testing using a single sample, the anomaly introduced 
within block was recoverable/elastic in nature, rather than permanently damaging. The chosen method to 
accomplish this was an expanding, removable plug designed to generate repeatable and localized 
compressive stress, such as those which could be generated by swelling or anisotropic thermal expansion 
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(Figure 1). The plug was constructed from a 1.5-cm long rubber cylinder inserted onto the end of a 
threaded rod. Metal washers were positioned on each side of the cylinder. An aluminum tube sized to fit 
over the threaded rod transferred the compression of an external nut into the stopper, causing it to expand 
in place within the sample. Though only two discrete locations (near block edge, block middle) are 
discussed in this report, this assembly is capable of being precisely inserted and affixed at any depth 
within the sample. This setup enabled localized stresses to be applied internally to the hex block, leaving 
the outer surface unblemished for external measurement by the LDV. While the stresses applied by the 
plug to the internal surfaces were not directly quantified, it was made repeatable using a torque meter on 
the wrench used to tighten the external compressive nut.  

 
A 

 
B 

 
 

Figure 1. Diagram of experimental testing setup for hex block. (A) Insertable rubber plug assembly. (B) Plug 
and LDV measurement locations on the hex block. Diagrams not drawn to scale. Block geometry 
is comparable to those described in Trellue et al. [12]. 

An example of an as-recorded vibration time series and its spectral content is given in Figure 2, showing 
the steady-state response of the sample both in time and in frequency. Different locations were measured 
by horizontally translating the entire assembly in front of the LDV beam to ensure a consistent, normal 
angle between the beam and block surface. This prevented undesirable measurements of horizontal 
components of motion from a beam hitting the surface at a changing and oblique angle, which could 
unintentionally encode location information within the training data given to the ML model. 

We note that most measured responses included several distinct resonances originating from the galvo 
system in the measurement setup rather than the samples themselves. Primarily located between 7 – 30 
kHz, these resonances were distinguished from the sample resonances by (i) their consistent frequency 
and amplitude regardless of the laser location or excitation level of the transducer, and (ii) their broad 
peak widths that contrasted with the narrow peaks associated with the resonances of the samples. While 
these features would typically be viewed as undesirable spectral contamination for modal analysis, we 
chose to leave them in the dataset as an opportunity to perform a more realistic evaluation of our ML 
approach for real-world applications, where any number of nearby components or processes would be 
likely to introduce spectral features unrelated to the structural health of a component of interest. 
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Figure 2. Example of vibrational data collected at point 02 with the plug inserted at 14 cm depth. (top) 

Vibration time series with amplitude given in voltage. (bottom left) Frequency response spectrum 
up to 100 kHz. (bottom right) Spectrogram of response amplitude as a function of frequency and 
time, showing a consistent spectral response over the duration of the measurement. Frequency 
axis shown in log-scale to better highlight spectral features related to resonance between 1 and 
20 kHz. 

 Machine Learning Integration 

Machine learning provided the analytical power to efficiently extract the relevant SHM features from the 
large vibrational datasets collected in this study. While graph neural networks (GNNs) had previously 
been deployed for similar tasks in previously funded MRP work, we chose to augment the model using a 
Fourier neural operator (FNO) due to its demonstrated ease of implementation and strong predictive 
performance across a range of physical systems and partial differential equations in recent studies [13–
15]. This hybrid physics-informed GNN-FNO framework required minimal backend changes to the 
workflow and added only small computational expense. 

Our GNN-FNO model takes inputs from one or more measured time series, which are then divided into 
smaller time windows of 4 ms (1000 points) that are processed as labeled training data for initial model 
fitting, validation data for model tuning, or set aside as unseen test data to evaluate final model 
performance. Currently, the model can scale up to incorporate at least 100 simultaneous and independent 
time series measurements. However, we have found certain scenarios where the model can make accurate 
predictions of experimental conditions using as little as a single time series. Each time series consists of 
one component of motion at one measurement point and represents one node in the graph. To date, all 
measurements used with this model consisted of one- or three-component surface velocity measurements 
made by an LDV. However, the model could seamlessly transition to use strain measurements from 
distributed acoustic sensors (e.g. fiber optic cables) or data from other types of embedded sensors as long 
as the inputs consisted of synchronized time series.  

The FNO is implemented by first expanding the dimensionality of each input time series in the Fourier 
(frequency) domain. During the training process, the model learns weights for each Fourier dimension as 
it identifies the spectral features relevant for the desired predictions. The GNN combines spectral 
information from each node into node neighborhoods by passing information to each node from all 
adjacent nodes, retaining the positional information of each node. The node-neighborhood information is 
passed through a series of convolutional layers, then further combined to make a prediction for the 
desired property, such as the location of a stress perturbation. 
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Traditionally, SHM may identify one or more spectral features that indicate stiffening or softening, or are 
otherwise distorted by stress or damage conditions. The GNN-FNO model identifies many spectral 
markers across the entire spectrum of the signal simultaneously to infer stress and damage conditions, 
providing a degree of redundancy that minimizes the effects of transient or uncorrelated features on 
prediction accuracy. We have tested the model by giving it only limited chunks of the expanded 
dimensionality in the Fourier domain, and the results are clear that markers exist throughout the spectrum.  

Prior to analysis of newly collected graphite datasets, improved performance of this ML workflow was 
confirmed through reprocessing of extensive vibrational data collected on a stainless-steel hexagonal test 
article in previously funded work [7]. Predictions of positional information—not made available during 
model training—improved significantly (Figure 3), with correct predictions of location increasing from 
about 10% of the total with a GNN alone to nearly 90% with the GNN-FNO workflow. Predictions of 
artificially induced stress levels also improved from 75-85% correct to over 99% correct, even as the 
model was given a reduced amount of training data from single sensors among the available 105 
measurement locations. Additional training details are given for these two models in Appendix A. 

 
A B 

  

Figure 3. GNN-FNO prediction performance (A) The GNN-FNO model is able to accurately determine the 
point on the component where the measurement was made. This demonstrates the model learns 
positional information that is not explicitly presented during the training process. (B) Stress 
conditions were controlled by applying known levels of torque to a clamping apparatus mounted 
to the sample. The model has a nearly 100% success rate determining the label associated with 
the applied torque.  

 Results and Discussion 

Baseline acoustic testing of as-machined graphite samples with simple geometries captured linear 
resonances and modal deflections to determine the feasibility of the experimental design on the more-
complex and massive hex block using existing experimental hardware. We found the spherical and rod 
samples to resonate in a repeatable and detectable manner, suitable for characterization using established 
resonance-based methods. Results from a subset of spherical samples are given in Figure 4. Elastic 
characterization using RUS indicated the eight samples had Young’s moduli of 10.94±0.14 GPa, closely 
in line with 10.8 GPa given as a typical value by the supplier. Despite tight clustering of material 
properties across the samples, part-to-part variations in the vibration responses of the graphite rods and 
spheres were found to be highly distinctive by the ML model, leading to nearly perfect sample 
identification predictions (>99% accuracy). We attribute this to minor geometry and density differences 
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(≤1% across the samples), suggesting sensitivity of the approach to small structural changes. Given the 
ease of distinguishing the samples using ML-based acoustic characterization, we chose to focus on 
anomalies introduced within a single sample to remove compounding effects of inter-sample variability. 

 
A B C 

 

  
Figure 4. Visual summary of elastic characterization of graphite spheres. (A) Experimental test setup. (B) 

Selected modeled and measured modes of two samples used for elastic characterization using 
RUS, confirming the samples retained elastic properties similar to those stated by the supplier 
after machining. Warm colors in mode shapes represent large vibration amplitudes at the given 
resonance frequencies. (C) Spectra collected on a set of eight nominally identical samples, with 
colored curves matching to selected samples from (B). Sharp peaks starting around 22 kHz 
represent resonances of the samples, while consistent, broad peaks (e.g. near 7 and 12 kHz) 
originate from the external LDV control mirrors. 

Similar baseline modal testing on the hex block confirmed that resonances could be induced throughout 
the block across a range of input frequencies (Figure 5). While boundary effects from the supporting foam 
sufficiently shifted frequencies to prevent frequency matching and quantitative material property 
extraction using RUS, strong mode shape agreement in the audible frequency range confirmed the testing 
setup was viable and sufficiently repeatable to proceed with ML predictions of anomalous structural 
conditions within the block. 

 
Figure 5. Selected resonance modes measured below 10 kHz (left) and FEA-modeled (right) for the tested 

hexagonal graphite block. Block geometry is comparable to that described in Trellue et al. [12]. 

 Forward Model Sphere A Sphere B 

Mode 
1 

   
[kHz] 22.092 21.986 (-0.5%) 21.409 (-3.1%) 

Mode 
7 

   
[kHz] 40.869 41.683 (+2.0%) 41.102 (+0.6%) 

Mode 
13 

   
[kHz] 55.111 56.015 (+1.6%) 54.596 (-0.9%) 
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Based partially on measured mode shapes which indicated strong surface responses along the top free 
edge of the hex block, stress concentrations were introduced within the center, upper hole using the 
expanding plug assembly. In total, 12 measurement locations were repeated along this top edge for each 
of the three different plug configurations (not present, 1 cm from end, 14 cm from end) that, due to 
sample symmetry, represented the 1D spatial extremes of a localized stress anomaly. While this is a 
simplified test matrix, the resulting model predictions are relevant for both defect identification and 
localization.  

The confusion matrix in Figure 6 summarizes these predictions. Across thousands of examples contained 
in the test data set from the 12 measured locations, the plug configuration was correctly identified about 
75% of the time. The overall presence of the plug was easier to detect from the data, identified at over 
90% accuracy. Within the same model run, the plug location was correctly identified at nearly 75% 
accuracy, suggesting a degree of ambiguity or inconsistency between the sample responses for the two 
installed plug locations. While this level of accuracy falls far below the 99% accuracy from this same 
model workflow when applied to artificial stresses within a stainless-steel hex block (Figure 3), a key 
difference may be the relative volume of the sample that was stressed during each of the experiments. The 
stainless-steel sample was nearly uniformly compressed, generating stress changes across its entire length, 
while the hex block experienced anomalous stress only within a small portion of its internal volume. 

 

 
Figure 6. The GNN-FNO model can determine the implemented plug configuration solely from minimal 

vibration spectra.  Predictions are particularly accurate (>90%) for assessing the presence of the 
plug within the system. 

To gain a better understanding of the spectral features learned by the ML model to produce predictions of 
the plug configuration, we generated a correlation matrix to quantitively compare the similarity of the 36 
independently collected spectra (three plug configurations, 12 measurement locations) across the audible 
frequency range (Figure 7). While a matrix such as this provides an incomplete perspective of the multi-
dimensional feature extraction used by the GNN-FNO model, several notable visual patterns are well 
aligned with the predictive performance of the model.  

First, we note the relative dissimilarity of spectral pairs when the plug was absent in at least one of the 
datasets, with correlations typically falling in the 0.6 – 0.8 range. This contrasts with comparisons of 
spectral pairs for installed-plug data, where correlations increase into the 0.8 – 0.9 range. As a point of 
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comparison, a spectrum measured directly on an exposed extension of the plug assembly when it was 
installed at 14cm produced correlations of 0.2 – 0.3 when compared against data collected on the surface 
of the block. In Figure 7, outside of the main diagonal showing perfect correlation of each spectrum with 
itself, we also note more subtle diagonal patterns cutting across the matrix in both directions. This is the 
result of the combined effects of symmetry in the measurement locations as well as in the resonance mode 
shapes (see Figure 5). Diagonals going down to the right indicate vibrations measured at a single location 
remain relatively similar regardless of the plug location, while diagonals going down the left indicate 
vibration patterns at mirrored locations (e.g. 02 and 09) are relatively similar. Last, as correlation values 
between and among the two installed plug datasets are very similar, this simple comparison metric using 
broadband spectral data hints at some of the sources of confusion observed in our model predictions while 
also highlighting the value in an ML-based approach to signal discrimination and predictive labeling. As 
opposed to the single frequency range analyzed in Figure 7, the model is capable of simultaneously 
accessing spectral correlations across many overlapping frequency ranges to identify data features which 
are most predictive of applied structural change. 

 
Figure 7. Spectral similarity of vibration measurements made at various points along the surface of the 

hexagonal block. Lighter colors represent spectral pairs which are more similar, as measured 
using Pearson correlation coefficients calculated between log-normalized spectra in the audible 
frequency range from 1 – 20 kHz. 

 Expected Impact 

Microreactors may require advanced and innovative automation and significant reductions in staffing 
relative to commercial reactors to become a competitive energy option despite lower power outputs and 
limited economies of scale. Critical to this is the development of diagnostic frameworks capable of 
identifying and localizing structural or system-level defects with high precision and reliability. 
Embedding distributed sensors and integrating high-frequency acoustic interrogation with complementary 
sensing modalities will enable early detection of microcracks and other anomalies to increase safety 
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margins during operation. This and related work previously funded by MRP on enhanced SHM 
techniques indicate potential benefits to microreactor developers including: 

• Enhanced decision making: With the ability to leverage recent advances in suitable embedded 
sensor technologies, such as those in development at ORNL [16,17], signal interrogation techniques, 
and data reduction methodologies, this framework is suitable for integration with automated control 
systems to enable continuous monitoring of large-scale components across entire reactor systems. 
Further, continual detection improvements may be achievable through ongoing model retraining and 
exposure to greater varieties of operating conditions. 

• Scalability and generalizability: Incorporation of machine learning algorithms enhances scalability 
and adaptability across reactor types, establishing a foundation for self-monitoring microreactors 
capable of sustaining safe and reliable transport and operation under a wide range of conditions. Data 
processing techniques presented herein are largely sensor agnostic and scalable, meaning there are 
numerous types of sensor arrays that could be used or combined to enable a predictive model to 
provide comparable in situ structural information. While extended-duration, high-frequency SHM 
presents challenges in terms of data storage and computational management, results from this study 
and previous related work show that the transformation of raw time-series data into frequency-domain 
representations can be adequate and effective for machine learning–based SHM.  

• Cost reduction: Greater automation during operation and the ability to provide passive structural 
evaluations of graphite related to the anomalous stress uniquely induced during transit, 
startup/shutdown, and operation, reducing need for laborious physical inspections. Outputs may also 
prove valuable for validation of simulation efforts by microreactor vendors, especially for designs 
intended be deployed in large numbers. 

 

 Future Directions 

The structural characterization of the graphite hex block presented in this study consisted primarily of 
highly simplified one-dimensional anomaly location predictions. However, given the geometry of holes 
within the hex block, localization experiments on repeatable artificial defects can be extended to two and 
three dimensions to better assess the generalized performance of a GNN-FNO workflow to go from 
external surface vibration measurements to predictions of the characteristics of an internal structural 
anomaly. We expect this to provide greater insights into the effects of sensor spatial density, frequency 
bandwidth of measurements, and the overall generalizability of this approach for anomaly localization. 

Increasing the technical viability of this and similar of ML-based SHM approaches should be extended to 
longer-duration experiments that generate realistic progressive or emergent structural anomalies and 
enable on-the-fly model refinement and evaluation. This will allow for more robust assessment and 
validation of these approaches to identify changes from known baseline levels, as would be useful in an 
automated control system. This may also help in better defining sensitivity to the onset of structural 
changes during typical startup or operational scenarios. Coupling different sensor types—such as those 
already incorporated into current reactor design concepts to provide both internal and external data—may 
further enhance the effectiveness of these methods and enable conclusions to be made between sensor 
density/layouts and desired defect discrimination and localization targets. SHM efforts within MRP 
should also integrate with related initiatives, including cross-cutting opportunities in the Structural 
Materials area of NEAMS, where real-world graphite damage distributions may be useful to validate 
structural simulations of bulk fatigue and aging.  
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APPENDIX A 

Figure A1 gives two examples of GNN-FNO model fitting, corresponding to the models used to generate 
the location and stress predictions presented in Figure 3. Appropriate training of the models is, in part, 
confirmed by the similar evolution in accuracy for the training and validation data sets over the completed 
training epochs. This is an indication that the model is not overfitting, which would cause it to fail to 
generalize, where accuracy would decrease significantly if presented with previously unseen validation or 
test datasets from the same set of experiments. 

 

A B 

  
Figure A1. Accuracy of GNN-FNO model predictions as a function of epoch. Prediction accuracy given for 

location (A) and stress (B) labels from the training (black) and validation (blue) datasets. We note 
the compressed y-axes in (B) visually exaggerates accuracy differences between training and 
validation data as compared to (A). 
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