

General Atomics Center

UNIVERSITY OF SOUTH CAROLINA

Generation of Molten Salt Thermochemical Properties and Database Development

Ted Besmann

Juliano Schorne-Pinto, Jorge Paz Soldan Palma, Clara Dixon, Ronnie Booth, Jack Wilson, Aiswarya Padinhare Manissery, Zachary Gardiner Nuclear Engineering Program University of South Carolina

Molinaroli College of Engineering and Computing

Office of Nuclear Energy

Accomplishments

FY24 M3 Milestone

- Complete the assessment of CeF₃-UF₄: LaF₃-UF₄; BaCl₂-UCl₃; SrCl₂-UCl₃; LaCl₃-UCl₃; CeCl₃-UCl₃; ZrCl₄-, NaCl, KCl, MgCl₂, UCl₃; • NaCl-LaCl₃; MgCl₂-LaCl₃ systems and their inclusion in MSTDB-TC as documented in a letter report and accompanying database. 9/30/2024
- **MSTDB-TC** Versions 3.0, 3.1, and very recent 4.0 released with expanded documentation ٠

Papers ٠

- Thermodynamic Assessment of the Li, Na, K, Cs | F, I Eight-Component Reciprocal System, Clara M. Dixon, Mina Aziziha, Juliano Schorne-Pinto, and Theodore M. Besmann – J. Chem. Thermo. Accepted with minor revision
- Density Measurements of Molten LiF-BeF, and LiF-BeF, -LaF, Salt Mixtures by Neutron Radiography, Jisue Moon, Joanna • McFarlane, Hunter B. Andrews, Kevin R. Robb, Molly Ross, Dino Sulejmanovic, Yuxuan Zhang, Erik Stringfellow, Can Agca, Juliano Schorne-Pinto, Theodore M. Besmann, ACS Omega, 9 (25) 2024 27204–27213
- Thermodynamic modeling of CsF with LiF-NaF-KF for molten fluoride-fueled reactors, Clara M. Dixon, Juliano Schorne-Pinto, Mina • Aziziha, Jacob A. Yingling, Ronald E. Booth, Theodore M. Besmann, Journal of Molecular Liquids, 406 (2024) 125056
- Thermal Property Modeling and Assessment of the Physical Properties of FLiNaK, Schorne-Pinto, Juliano; Aziziha, Mina; Tisdale, • Hunter; Mofrad, Amir; Birri, Anthony; Christian, Matthew; Ard, Johnathan; Booth, Ronald; Yingling, Jacob; Palma, Jorge; Dixon, Clara; zur Loye, Hans-Conrad; Besmann, Theodore, ACS Applied Energy Materials, 2024, 7, 9, 4016–4029
- Conference Presentations: ACS: 4; MS&T: 3; TMS: 3 •
- Workshop on Measurement and Analysis of Thermochemical and Thermophysical Properties of Molten Salts: Organized by Ted Besmann and Tony Birri, Virtual, July 16-17, 2024 – Averaged almost 100 participants

Collaborations

- Toni Karlsson (INL): NaCl-PuCl₃-UCl₃ and NaCl-PuCl₃ phase equilibria and thermal functions
- Jacob Yingling (INL): U-Cl heat capacity studies
- Marisa Monreal and Hannah Patenaude (LANL): NaCl-MgCl₂-UCl₃ Phase equilibria
- Joanna McFarlane and Katie Johnson (ORNL): LiF-BeF₂ phase equilibria
- David Andersson (LANL) and Chao Jiang (INL): First principles calculations •
- Tony Birri (ORNL): Workshops and database management
- Markus Piro (McMaster Univ.): Automated QA determination •
- Stephen Raimen (Univ. Michigan): Measurement of oxygen in salts
- Brian Powell (Clemson Univ.): Solution calorimetry for NaCl-MgCl₂ intermediate phases •

Major Issue of Salt Purity Has Been a Focus: Determination and Purification

Purification Vitreous Carbon, 0.9ml

Quartz, 5ml

Quartz tube

Muffle/Tube furnace (RT-1200°C) installed in **Glovebox#2**, $H_2O < 0.1$ ppm, $O_2 < 0.1$ ppm

Inert gas (Ar, Ar + 4%H₂) or vacuum (35 mbar)

New Capability Allows Generation of Highly Accurate Heat Capacity Values

Calvet Pro - Setaram

- Tian-Calvet Heat-Flow Microcalorimeter equipped with two 3D thermopiles now allows for superior heat capacity determination
- Developed salt encapsulation to improve sample/crucible weight ratio •

>>>	Brönsted (1914) Clusius et al. (1949) Strelkov et al. This work	
0	900	110

Salt Systems Addressed in the Current Period (Some Included in MSTDB-TC Ver. 3.1)

Chlorides

- ZrCl_₄
- MgCl₂-UCl₃ (revised)
- NaCl-MgCl₂ (revised)
- NaCl-LaCl₃
- MgCl₂-LaCl₃
- BaCl₂-UCl₃
- SrCl₂-UCl₃

Fluorides

- SrF₂ (revised)
- SmF_3
- NaF-UF₃
- CsF-UF₃
- CsF-PuF₃
- LiF-LaF₃
- NaF-LaF₃
- LiF-CeF₃
- NaF-CeF₃
- LiF-PuF₃
- NaF-PuF₃
- BeF₂–KF (revised)
- KF–SrF₂ (revised)
- LiF–SrF₂ (revised)
- NaF–SrF₂ (revised)

Reciprocal salts

- Na,K,Cs|Cl,I
- Li, Na, K, Cs | F, I

Pseudo-ternary fluoride* LiF-BeF₂-CeF₃ • LiF-BeF₂-CsF • LiF-BeF₂-LaF₃ • LiF-BeF₂-NdF₃ • LiF-BeF₂-PuF₃ • LiF-BeF₂-UF₃ *Represented up to the solubility limit of third component due to limited data

with LiF-BeF₂

ZrCl₄ and Zr-Fuel Systems Models Developed

ZrCl₄: Gibbs energy functions for ZrCl_{4(s, l, and g)} fit to phase equilibria, $\Delta_f H^\circ$, $\Delta_{fus} H^\circ$, $\Delta_{sub} H^\circ$, $\Delta_{sub} S^\circ$, Cp, S,

- Better reconciliation of Cp and enthalpy increment data •
- Captured triple point
- Better fit the available vapor pressure data
- Evaluation of pseudo-binary systems of ZrCl₄ + alkali chlorides; KMgCl₃; and UCl₃

Computed Phase Diagrams from Derived Models for Newly Added Fluoride Systems

BaF_{2 ss} + BaUF₆

0.4

Mole fraction of UF₄

0.2

800

BaF₂

BaUF_e + UF

0.8

1

UF₄

0.6

products:

- BaF₂ ۲ SmF_3
- SrF₂

Pseudo-binary systems optimized for fission

Pseudo-binary Systems Content Matrices

MSTDB Databases **Available at** mstdb.ornl.gov

- MSTDB-TC Ver. 4.0 contains
 - 175 pseudo-binary systems
 - 61 pseudo-ternary systems •
 - 12 reciprocal systems that include iodine as anion
- Added new models that consider ZrCl₄, BaCl₂, SrCl₂ BaF₂, SrF₂, LaCl₃
- NaCl-MgCl₂ refined based on new experimental data
- Improved reciprocal system models with iodine

Higher Order Systems (> Pseudo-ternary)

- Li, Na | F, I
- Li, K | F, I
 Na, Cs | Cl, I
 Li, Na, K, Cs | F, I
- Na, Cs | F, I Li, K, Cs | F, I MgCl₂-NaCl-UCl₃₄
- K, Cs | F, I Li, Na, Cs | F, I MgCl₂-KCl-UCl_{3.4}
- Li, Cs | F, I

Molten Salt Reactor

- Na, K, Cs | F, I

• Na, K | Cl, I • Na, K, Cs | Cl, I

- Na, K | F, I K, Cs | Cl, I MgCl₂-NaCl-CsCl

Office of Nuclear Energy

Additions/Changes in MSTDB-TC for Ver. 4.0 vs. Ver. 3.1

Newly assessed pseudo-binary systems

- NaCl-MgCl₂
- LiCl–ZrCl₄
- NaCl-ZrCl₄
- KCl–ZrCl₁
- CsCl–ZrCl₄
- MgCl₂–ZrCl₄
- $UCl_3 ZrCl_4$
- $BaF_2 UF_4$
- $SrF_2 UF_4$
- LiF-SmF₃
- NaF-SmF₃

Newly assessed pseudo-ternary systems

- KCl-MgCl₂-ZrCl₄
- KCl-NaCl-ZrCl₄ •
- LiF-BeF₂-CeF₃ •
- LiF-BeF₂-CsF
- LiF-BeF₂-LaF₃
- LiF-BeF₂-NdF₃
- LiF-BeF₂-PuF₃
- LiF-BeF₂-UF₃

Existing models refined

- SrF_2
- BeF₂-KF
- KF–SrF₂
- $LiF-SrF_2$
- NaF-SrF₂

Current and Future FY25 Activities

FY25 M3 Milestone

• Report on the optimization of the thermochemical models for MgCl2-BaCl2, -SrCl2; BaCl2-Bal2; SrCl2-Srl2; and where salts/data are available Sm, Pr, and Gd fluorides with LiF, NaF, KF, and chlorides with NaCl and KCl. The models will be incorporated in MSTDB-TC and database. 9/30/2025

Systems undergoing evaluation and modeling

- Ba, Sr, and I in MgCl₂
- Sm in LiF, NaF, KF
- Pr in LiF, NaF, KF
- Gd in LiF, NaF, KF

- Sm, in NaCl, KCl
- Pr in NaCl, KCl
- Gd in NaCl, KCl
- NaCI-MgCl₂-UCl₃ •
- 2025 Molten Salts Thermal Properties Working Group Virtual Workshop
 - Effect of Oxygen, Hydrogen, and Moisture on Molten Salt Behavior 10AM to 3PM EDT, June 3-4, 2025; Registration is not required Link will be provided at MSTDB.ornl.gov and in broad email
- Continued development of GUI for viewing MSTDB-TC data and automated computing of pseudo-binary and -ternary phase diagrams with experimental data

12

Potential Efforts for FY26 and Beyond

- Refining understanding of FLiBe, including behavior of BeF₂, e.g., melt temperature
- Measurements and modeling of oxygen thermochemical behavior in base coolant and fuel salts
- Determining thermochemical parameters for hydrogen/tritium behavior in fuel salts, e.g., vapor pressures of hydrogen iodide
- Assessment of the state of tellurium in key salt systems to allow prediction via equilibrium calculations using MSTDB-TC
- Using Henry's law relationships for noble gases to allow including in thermochemical calculations
- Continued expansion of MSTDB-TC with priority additional constituents as identified by users and regulators

Support for related activities provided by

U.S. Department of Energy

Molten Salt Reactor BOGBAN

5/1/2025

Thank you

Ted Besmann besmann@sc.edu

General Atomics Center

Molinaroli College of Engineering and Computing

UNIVERSITY OF SOUTH CAROLINA

Additional Slides

Molten Salt Reactor ROGRAM

Office of Nuclear Energy

16

Example System Evaluations and Modeling

Additional measurements beyond reported values used to improve MgCl₂-UCl₃ thermodynamic model

Na,K,Cs|Cl,I fully modeled and validated using new NaCl-KCl-Csl measurements

Computed Phase Diagrams from Derived Models for Zr-Cl-FP Systems

ZrCl₄ Optimized Using Available Thermochemical data

Gibbs energy functions for $\operatorname{ZrCl}_{4(s, l, and g)}$ fit to phase equilibria, $\Delta_{f}H^{\circ}$, $\Delta_{fus}H^{\circ}$, $\Delta_{sub}H^{\circ}$, $\Delta_{sub}S^{\circ}$, Cp, S,

Needed to:

- Better reconcile Cp and enthalpy increment data
- Capture the triple point
- Better fit the available vapor pressures

29

27

25

23

21

19

17

15

680

(bar)

Pressure

Computed Phase Diagrams from Derived Models for Zr-Cl-FP Systems

Computed Phase Diagrams from Derived Models for Newly Added Fluoride Systems

Pseudo-binary systems optimized for fission products:

