

G

Ο

R

Α

LANL Experimental Support of MSTDB Development

Marisa Monreal

Inorganic, Isotope, and Actinide Chemistry – Chemistry Division

Los Alamos National Laboratory

Molten Salt Reactor Campaign Annual Review, April 22-24, 2025

LA-UR-25-23739

LANL Actinide-Molten Salt Chemistry and Properties Research

Salt systems:

- Actinides: uranium, thorium, plutonium
- Chlorides & fluorides

Research:

- Chemistry & thermophysical • properties
- Both experiment and modeling •
- Studies across length scales local structure, macroscale properties

Benefitting communities:

Pyroprocessing/recovery & • purification of actinide materials, nuclear energy, fundamental actinide science, global security/non- and counterproliferation

864 °C / 762 °C

Molten Salt Reactor OGB

LANL Actinide-Molten Salt Chemistry and Properties Research

Researchers:

- Graduate students, postdocs, scientists, engineers
- Chemistry, materials science, earth and environmental science, theoretical/mod-sim

Collaborations:

National Laboratories, • universities, industry, NEAMS, SciDAC, FUTURE EFRC

Sponsors/Projects:

MSR Campaign, LDRD, GAIN, ٠ Technology **Commercialization Fund** (TCF), IRP, NEUP

Scientists & Engineers

Matt Jackson Scott Parker David Andersson Alex Long Hongwu Xu Sven Vogel Karla Erickson **Kristen Pace Ping Yang** Gaoxue Wang Harris Mason Hakim Boulkhalfa **Travis Carver** Research Technologist: **Clare Hatfield**

Post-docs & Students

Hannah Patenaude Jarom Chamberlain Olivia Dale **Dylan Tharp Eralie** Summer 2025: Sean Peyres **Bryn Merrill**

Molten Salt Reactor

Scott Parker

lannah Patenaude

Dylan Tharp Eralie

Matt Jackson

LANL Actinide-Molten Salt Chemistry and Properties Research

Properties	Experimental Techniques
Density	Neutron Radiography, Conventional (Push-rod) Dilatometry
Viscosity	Dynamic Neutron Radiography, Rotationa Viscometry
Melting Point/Phase Diagram, Heat Capacity	Differential Scanning Calorimetry (DSC)
Corrosion	Electrochemistry
Heat of Dissolution, Enthalpy of Mixing, Heat Capacity	Drop Calorimetry
Local Structure	Pair Distribution Function (PDF) Analysis, Raman Spectroscopy, Electrochemistry
Synthesis & Characterization	Inorganic halide synthesis, SEM, Melting Point (DSC), pXRD, SS-NMR Spectroscopy

Experimental efforts & strategy:

- Method development, uncertainty reduction
- Lower and higher throughput • methods
- Non-rad \rightarrow DU, Th \rightarrow Pu
- Iterate with mod-sim

Actinide Halide Synthesis and Characterization

Synthesis of pure, isolable actinide chlorides and fluorides to enable property research

- Both known & novel synthetic routes (e.g., for UCl₃, UCl₄, ThCl₄, UF₄)
- Characterization techniques to confirm purity (e.g., SS-NMR; pXRD; DSC)
 - Impurities: other actinide species; water; products of rxn with water

UCl₃-NaCl-MgCl₂ Phase Transitions

- Three pseudobinaries
 - * NaCl-MgCl₂
 - UCl₃-NaCl
 - * UCl₃-MgCl₂

Four pseudoternary invariant point:

- 2 Eutectics
- Quasi-Peritectic
- Saddle Point
- Determined <u>computationally</u>!

UCl₃-NaCl-MgCl₂ Phase Transitions

- Experimental plan (differential scanning calorimetry):
 - Various compositions around alleged eutectics of pseudobinaries
 - (In)Validate four calculated invariant points for pseudoternary
 - Manuscript in preparation

Composition	UCl ₃ (mol%)	NaCl (mol%)	MgCl ₂ (mol%)	T (°C)	
	0	65	35	TBD	
	0	60	40	TBD	
Naci-Mgci ₂	0	58	42	TBD	Alleged Eutectic
	0	55	45	TBD	-
UCl ₃ -NaCl	34	66	0	TBD	Alleged Eutectic
	30	0	70	TBD	
UCl ₃ -MgCl ₂	35	0	65	TBD	Alleged Eutectic
	40	0	60	TBD	
Eutectic 1	11.2	63.7	25.1	446	
Eutectic 2	6.6	57.8	35.6	447	Alleged Transition
Quasi-Peritectic	4.7	52.0	43.3	458	Temperatures
Saddle Point	30.4	60.7	8.9	448	

UCl₃-NaCl-MgCl₂ Phase Transitions

- Experimental plan (differential scanning calorimetry):
 - Various compositions around alleged eutectics of pseudobinaries
 - (In)Validate four calculated invariant points for pseudoternary
 - Manuscript in preparation

(mol%) (mol%) (mol%) (mol%) (°C)	
Pseudobinaries	
0 65 35 TBD	
NaCl Macl 0 60 40 TBD	
1000000000000000000000000000000000000	eged Eutectic
0 55 45 TBD	
UCl ₃ -NaCl 34 66 0 TBD Alleg	eged Eutectic
30 0 70 TBD	
UCl ₃ -MgCl ₂ 35 0 65 TBD Alleg	eged Eutectic
40 0 60 TBD	
Pseudoternaries	
Eutectic 1 11.2 63.7 25.1 446	
Eutectic 2 6.6 57.8 35.6 447 Alles	eged Transition
Quasi-Peritectic4.752.043.3458Temp	nperatures
Saddle Point 30.4 60.7 8.9 448	

UCl₃-NaCl-MgCl₂ Phase Transitions

- Experimental plan (differential scanning calorimetry):
 - Various compositions around alleged eutectics of pseudobinaries
 - (In)Validate four calculated invariant points for pseudoternary
 - Manuscript in preparation
- Collaboration with USC
 - Experimental comparisons
 - Computational validation

	Composition	UCl ₃ (mol%)	NaCl (mol%)	MgCl ₂ (mol%)	Т (°С)	
		0	65	35	TBD	
		0	60	40	TBD	
	Naci-Mgci ₂	0	58	42	TBD	Alleged Eutectic
		0	55	45	TBD	-
	UCl ₃ -NaCl	34	66	0	TBD	Alleged Eutectic
		30	0	70	TBD	
	UCl ₃ -MgCl ₂	35	0	65	TBD	Alleged Eutectic
		40	0	60	TBD	
	Eutectic 1	11.2	63.7	25.1	446	
	Eutectic 2	6.6	57.8	35.6	447	Alleged Transition
Ç	uasi-Peritectic	4.7	52.0	43.3	458	Temperatures
	Saddle Point	30.4	60.7	8.9	448	

Approach to $C_{p,liquid}$ via DSC:

Need to eliminate assumptions required when measuring only liquid phase

Liquid Heat Capacity

Pu-Molten Salt Density by Neutron Radiography: Addressing Bubble **Formation**

- Density of molten U and Pu chloride salts has been determined via neutron radiography at LANSCE Bubbles were observed in some Pu
- chloride samples

Pu-Molten Salt Density by Neutron Radiography: Addressing Bubble **Formation**

Developed a method in the image analysis to address the bubbles and determine densities

Method:

- radial symmetry
- reconstruction
- reconstruction

1. Create sample image stack

2. Perform artifact subtraction via

3. Create equivalent height

4. Image subtraction of the artifact subtracted sample image from the equivalent height

Pair Distribution Function (PDF)

Characterizing local structure

The pair distribution function (PDF), g(r), gives the • probability of finding an atom at a distance r from an atom at the origin

Mod-sim data, validated with data from density by neutron radiography experiment:

8.00

R

OGRA

6.00

10.00

Molten Salt Reactor

r [A]

Top center graphic credit: Kate Page's "Atomic Pair Distribution Function (PDF) Analysis", online as NXS 2018 PDF KatePage.pdf

Experimental data:

Collected on pure UCI₃ and UCI₃-NaCI mixtures (LANSCE; **HFIR, Feb 2025**) Currently undergoing analysis-and comparison

- to/validation of mod-
- sim data
- Fall 2025 ACS presentation

Drop Calorimetry

Developed methodology for actinide molten salt heat capacity (C_{p}) , enthalpy of mixing, enthalpy of fusion

- Setaram AlexSys-800 calorimeter Isoperibol Calvet-type calorimeter T range: 400 to 800 °C
- Methodology developed using Setaram AlexSYS-800 calorimeter on **LiCl-KCl eutectic**

Strzelecki, A., Parker, S., Mann, S., Monreal, M. J., Jackson, Xu, H. et. al., Rev. Sci. Inst., 2024, 95, 014103.

Determination of thermochemical properties of the molten PuCl₃-NaCl eutectic mixture by high-temperature drop calorimetry

PuCl₃-NaCl

Strzelecki, A., Parker, S., Monreal, M., Xu, H., et. al., J. Molec. Liq., 2025, 424,127073.

UCl₃-NaCl

Hongwu Xu and Summer 2025 student Bryn Merrill

2025-2027:

Check for updates

Molten Salt Reactor OGRA

MSR Campaign, Summer 2025:

Molten Salt Reactor OGRAM

Complementary research effort: LDRD Exploratory **Research Project,** UCl₃-UCl₄-NaCl UCl₃-UCl₄-CrCl₂-NaCl

of ENERGY Office of Nuclear Energy

Viscosity

Falling Sphere with Dynamic Neutron Radiography

- New apparatus designed and • built; testing at HFIR Fall 2024
- Sphere manufacture $B_{4}C$ •
 - Developed a method to produce a sphere from an arbitrary shape
 - Tuned surface roughness and size to achieve 2-4mm spheres
 - Characterized by laser profilometry, X-ray CT, immersion density

Complementary research effort: **Compact Rotational Viscometer**

- **Obtained FLiNaK preliminary** • results
- Further development this ٠ summer, towards actinidebearing chlorides: 2025 DOE **NNSA Stewardship Science** Graduate Fellow Sean Peyres (Univ of Illinois, Urbana-Champaign)

LANL Actinide-Molten Salt Research: **Ongoing Efforts Complementary to MSR Campaign Activities**

Office of Nuclear Energy

16

Advancing the Prediction of Actinide-Molten Salt Behavior

- Ab initio molecular dynamics (AIMD) simulations; density functional tight binding (DFTB) modeling, machine-learning-augmented DFTB parameterization (MLTB)
- A grand challenge: lower computational costs to tackle vast chemical, compositional, and temperature space -- and complex properties (viscosity, corrosion)
 - New LDRD Exploratory Research Project (2025-2027): "Navigating Vast Chemical Space: Empowering Molten Salt Modeling with Universal Graph Neural Networks" (Wang and Monreal)

1.9

Journal of Nuclear Materials olume 568, September 2022, 153836

Ab initio molecular dynamics (AIMD) simulations of NaCl, UCl₃ and NaCl-UCl₃ molten salts

Journal of Molecular Liquids Volume 385, 1 September 2023, 122347

Ab-Initio molecular dynamics simulations of binary NaCl-ThCl₄ and ternary NaCl-ThCl₄-UCl₃ molten salts

Gaoxue Wang a, Bo Li a, Ping Yang a 🙎 🔯 , David A. Andersson b 🙎 🔀

- Evaluated AIMD approaches; must include dispersion forces
- Reasonable agreement with our experimental data
- Interesting note: Small deviation from ideal solution < eutectic (<~37%UCl₃); correlates with calcd PDF: U-U network disruption (exptl data needed!)

Journal of Nuclear Materials Volume 591, 1 April 2024, 154902

First-principles investigation of the thermophysical properties of NaCl, PuCl₃, and NaCl-PuCl₃ Molten salts

Kai Duemmler^a, David Andersson^c, <u>Benjamin Beeler^{a b} 2</u>

Actinide-Molten Salt Electrochemistry

Lead: Hannah Patenaude, Director's Post-Doctoral Fellow

- **Boron-doped diamond electrodes**
 - Material customization
 - Measurement optimization
 - Geometry, topography, & surface chemistry
- Small-volume electrochemical cells
 - Minimize analyte (e.g., Pu)
 - Control surface area
- Example focus areas:
 - Cation influence on coordination & redox \bullet
 - Focus on actinides •
- Integrated with Advanced Modeling and Simulation Expertise at LANL
 - SciDAC (*PI: Laurent Capolungo*): Scientific **Discovery through Advanced Computing** program to advance modeling behavior and properties of structural materials under molten salt conditions

MacInnes et al., Dalt. Trans., 50, 2021.

Sessile Drop Experiments

- Observing the shape of a liquid droplet resting on a solid surface (solid-liquid-gas/three-phase interface)
- Measure contact angles, surface energy, wettability

Custom apparatus: compact modular furnace

- Up to 100 mTorr, 1000 °C
- Continuous gas flow
- Compact, for use in glove box
- Very clear optical windows for imaging

Tin on alumina, under argon at 300 °C

Gallium on alumina, under 2% H₂/Ar at 750.2°C

Sessile Drop: Na

Pipetting Na on pyrex

Na on FeCrAI, 160 - 600 °C

- Na reaction with an FeCrAl alloy, 600°C under argon
- Exposure to 10 ppm O_2 begins reaction

Molten Salt Reactor 0 6

Actinide-molten salts are next up!

Mo Foil

Molecular Chemistry

& Materials Science

The Plutonium Science Laboratory (PluS Lab)

The **PluS Lab** will grow, sustain, and innovate workforce proficiency to address current and emerging nonproliferation challenges through targeted fundamental plutonium S&T.

Gram-scale, non-irradiated Pu experiments • Unclassified • Flexible, agile

Plus

Molten Salt

Science

Aqueous

Systems

Acknowledgements

Scientists & Engineers

Matt Jackson Scott Parker David Andersson Alex Long Hongwu Xu Sven Vogel Karla Erickson Kristen Pace Ping Yang Gaoxue Wang Harris Mason Hakim Boulkhalfa Travis Carver *Research Technologist:* Clare Hatfield

Post-docs & Students

Hannah Patenaude Jarom Chamberlain Dylan Tharpe Eralie Olivia Dale *Summer students:* Sean Peyres, Bryn Merrill

University Collaborators, Visiting Students

Univ of Utah, MIT, UC Berkeley, OSU, UNLV, Texas Tech, Univ of Illinios, WSU

Funding:

Molten Salt Reactor Campaign

LANL Laboratory Directed Research and Development (LDRD) Directed Research Project #20210113DR and #20250148ER

Technology Commercialization Fund (TCF) with Kairos Power

Technology Commercialization Fund 1 Control Co

This work was performed, in part, at the Los Alamos Neutron Science Center (**LANSCE**), a NNSA User Facility operated for the U.S. Department of Energy (DOE) by Los Alamos National Laboratory (Contract 89233218CNA000001).

Molten Salt Reactor P R O G R A N

