

G

ten Salt Reactor **Machine Learning Prediction** M and Molecular Dynamics Modeling of **Thermophysical Properties of Molten Salts**

Manh-Thuong Nguyen

Physical and Computational Sciences Directorate Pacific Northwest National Laboratory Richland, Washington 99354, USA MSR Campaign Review; April 22-24, 2025; Richland, WA

Office of Nuclear Energy

Overview

Milestone Number	Milestone title	Due Date
M3AT-25PN0705061	Report on Thermophysical properties of binary molten salt mixtures: machine learning prediction	12/15/2024
M3AT-25PN0705062	Complete computational investigation of thermophysical (density, specific heat, and viscosity) and structural properties of NaCl- PuCl3-AmCl3 molten salts.	09/30/202

- Milestone M3AT-25PN0705061
- Milestone M3AT-25PN0705062
- Publications & presentations

Milestone #1 - M3AT-25PN070506

Description: We use machine learning and literature data to

- (i) investigate the correlation between thermophysical properties of binary molten salt systems and physical and chemical properties of elements involved
- (ii) train models for prediction of the thermophysical properties

Milestone: M3, completed (Dec 15, 2024)

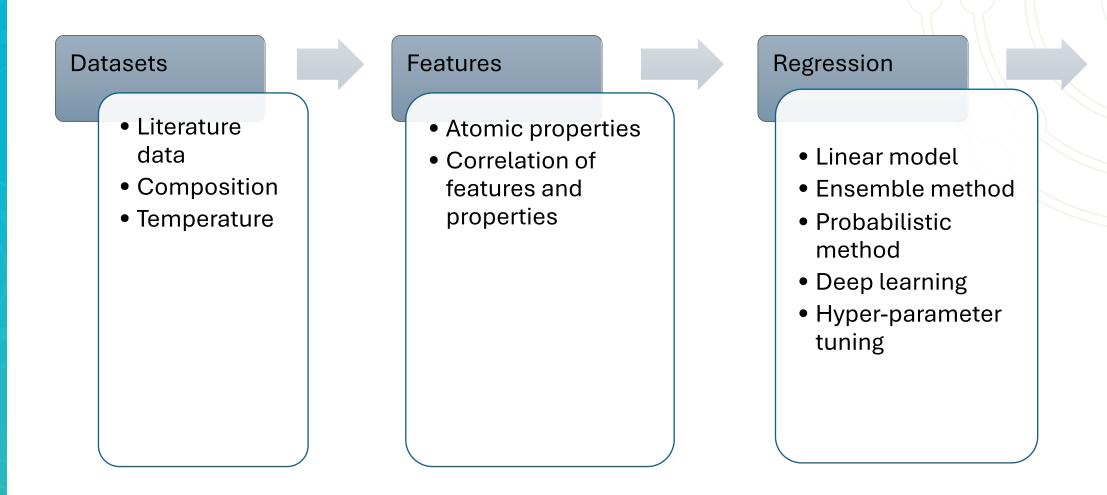
Our main motivation is a rapid approach for determining molten salt properties

Imagine that we can obtain thermophysical properties of a molten salt mixture in seconds, ۲ without...

- Data science (AI/ML) enables us to achieve this goal \bullet
- Our first attempt is to build machine learning models for prediction of thermophysical properties of *binary halide systems*.



The following machine learning workflow was adopted



• Error metrics

We used literature data for datasets

- Extracted info: \bullet
 - 1. Name of mixture
 - 2. Composition
 - 3. Temperature
 - 4. Value of property
- Mostly from database by Janz et al. Data in • the MSR campaign also used.
- Density, viscosity, electrical conductivity, and surface tension
- Organized in Excel
- Thousands of data points: 80% training set, • 20% test set

Mixture	Composition (mol% of salt #2)	Temperature (K)	Density (g/cc)
AlF3-LiF	90	1130	1.972

RESEARCH ARTICLE | JANUARY 01 1974

Molten Salts: Volume 4, Part 1, Fluorides and Mixtures Electrical Conductance, Density, Viscosity, and Surface Tension Data 🕗

G. J. Janz; G. L. Gardner; Ursula Krebs; R. P. T. Tomkins

Check for updates

J. Phys. Chem. Ref. Data 3, 1-115 (1974) https://doi.org/10.1063/1.3253134

Numerical values (gcm⁻³)

Mol percent LiF

T	100	95	90	85	80	75	70	65		
1	100	95	90	65	. 00	13	10	05	60	55
						-				
1130	1.800	1.885	1.972	2.037	2.073	2.098	2.088	2.041	1.962	1,861
1140	1.795	1.880	1.966	2.030	2.065	2.089	2.079	2.031	1.952	1.851
1150	1.791	1.875	1.960	2.023	2.058	2,081	2,069	2.021	1.942	1.842
1160	1.786	1.870	1.953	2.016	2.051	2.073	2.060	2.010	1.931	1.832
1170	1.781	1.866	1.947	2.010	2.044	2.064	2.051	2.000	1.921	1.823
1180	1.777	1.861	1.941	2.003	2.037	2.056	2.041	1.990	1.911	1.814
1190	1.772	1.856	1.935	1.996	2.030	2.048	2.032	1.979	1.901	1,805
1200	1.767	1.851	1.929	1.990	2.023	2.039	2.022	1.969	1.891	1.795
1210	1.763	1.846	1.923	1.983	2.016	2.031	2.013	1.959	1.880	1.780
1220	1.758	1.842	1.917	1.976	2.009	2.022	2.004	1.948	1.870	1.776
1230	1.753	1.837	1.910	1.970	2.002	2.014	1.994	1.938	1.860	1.76
1240	1.748	1.832	1.904	1.963	1.994	2.006	1.985	1.928	1.850	1.758
1250	1.744	1.827	1.898	1.956	1.987	1.997	1.976	1.918	1.840	1.748
1260	1.739	1.822	1.892	1.950	1.980	1.989	1.966	1.907	1.829	1.739
1270	1.734	1.817	1.886	1.943	1.973	1 981	1 957	1.897	1.819	1.729
1280	1.730	1.813	1.880	1.936	1.966	1.972	1.948	1.887	1.809	1.720
1290	1.725	1.808	1.874	1.929	1.959	1.964	1.938	1.876	1.799	1.71
1300	1.720	1.803	1.867	1.923	1.952	1,956	1.929	1.866	1.789	1.70
1310	1 716	1.798	.1.861	1.916	1.945	1.947	1.920	1.856	1.778	1.695
1320	1.711	1.793	1.855	1.909	1.938	1.939	1.910	1.845	1.768	1.68

Molten Salt Reactor

U.S. DEPARTMENT of **ENERGY**

Office of Nuclear Energy

We built features using atomic properties

Mixture & composition

 $x AC_n - y BD_m$

A, B = metalsC, D = F, Cl, Br, and In, m = 1,2,3,... x,y > 0 and x+y=1

- Atomic properties of elements (Number of electron, radius, ionization energy, ect.)
- Average schemes
- Temperature
- Totally, 393 features

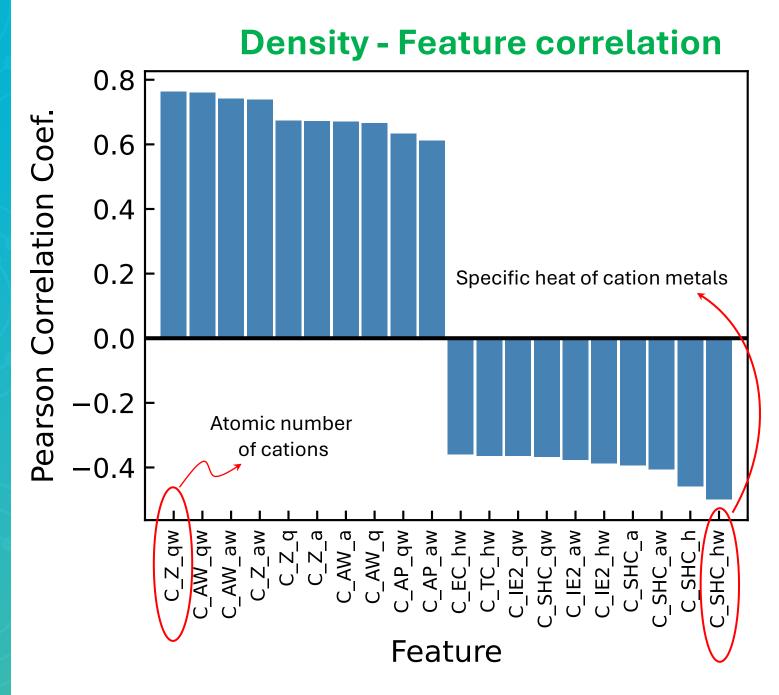
	ments and average meth BY _m),, A and B are cation	
Method	Composition-agnostic	
	and composition-	cation and anions.
	based notations	fea
Arithmetric	$\left< \mathrm{F} \right>_{\mathrm{aw}}$ and $\left< \mathrm{F} \right>_{\mathrm{a}}$	$\langle F \rangle_{aw}($
average		(I'/aw(
		⟨F⟩ _{aw} (a
Standard deviation	$\left< \mathrm{F} \right>_{\mathrm{sw}}$ and $\left< \mathrm{F} \right>_{\mathrm{s}}$	⟨F⟩ _{sw} (c
		⟨F⟩ _{sw} (an
Harmonic average	$\left< F \right>_{hw}$ and $\left< F \right>_{h}$	⟨F⟩ _{sw}
		⟨F⟩ _{sw}
Quadratic average	$\left< F \right>_{qw}$ and $\left< F \right>_{q}$	⟨F⟩ _{sw} (c
		⟨F⟩ _{sw} (an

Gharakhanyan et al. Journal of Chemical Physics 2024, 160 (20)

	feature F in the binary system
anions in the two salts.	anions in the two salts.

composition-based features for	
. Likewise, composition-agnostic	
atures with x=y=1	
$(\text{cation}) = \frac{\mathbf{x}\mathbf{F}_{A} + \mathbf{y}\mathbf{F}_{B}}{\mathbf{x}\mathbf{F}_{A} + \mathbf{y}\mathbf{F}_{B}}$	
$\mathbf{x} + \mathbf{y}$	
anion) = $\frac{nxF_X + myF_Y}{nx + my}$	-
$\Pi X \pm \Pi I$	-
$ xF_A - yF_B $	
$(ation) = \frac{\pi x + y}{x + y}$	
nion) = $\frac{ nxF_X - myF_Y }{ nxF_X - myF_Y }$	ľ
$mon) = \frac{1}{mx + my}$	
$v(\text{cation}) = \frac{x + y}{x + y}$	
$\frac{x}{F_A} + \frac{y}{F_B}$	
$F_A + F_B$	
$v(anion) = \frac{nx + my}{\frac{nx}{n} + \frac{my}{n}}$	-
$r_{\rm v}({\rm amon}) = \frac{\overline{\rm nx}}{\overline{\rm F}_{\rm x}} + \frac{\rm my}{\rm F_{\rm v}}$	
	h
cation) = $\sqrt{\frac{xF_A^2 + yF_B^2}{x + y}}$	
x + y	
<u>м</u>	
nion) = $\sqrt{\frac{nxF_X^2 + myF_Y^2}{nx + my}}$	
$nony = \sqrt{nx + my}$	
	1

We found unknown correlation between properties of a molten salt mixture and its constituents



Pearson correlation coefficient $\sum_i (x_i - \bar{x})(y_i - \bar{y})$ $\overline{\sqrt{\sum_i (x_i - \bar{x})^2 (y_i - \bar{y})^2}}$

correlated with the heat capacity of metals.

Density of molten salts is most anti-

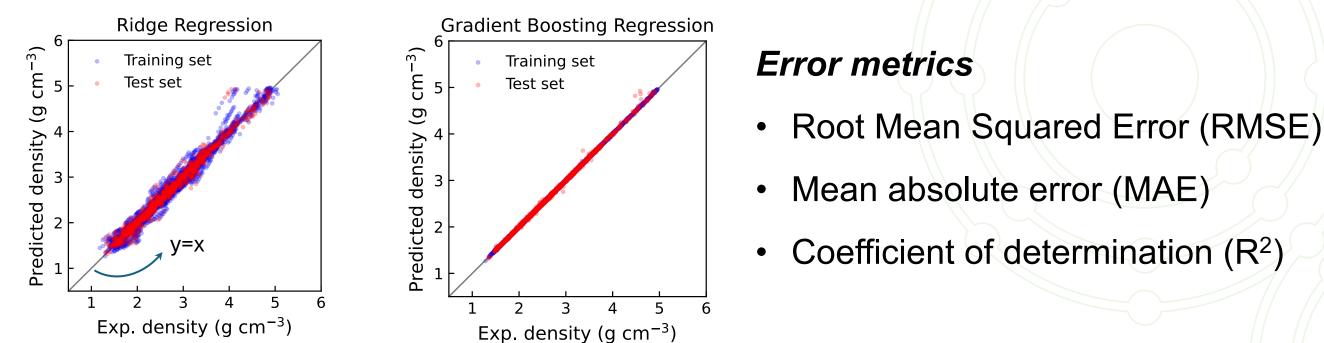
We tested different regression methods

Ensemble

- Methods:
- Ridge regression Linear Lasso regression
- Gradient boosting regression \checkmark
- **Random Forest**
- Gaussian process regression Bayesian
- Artificial Neural Network Deep learning
- Hyperparameter tuning:
- ✓ Parameter grid searches

https://www.tensorflow.org

Trained models can accurately predict the density

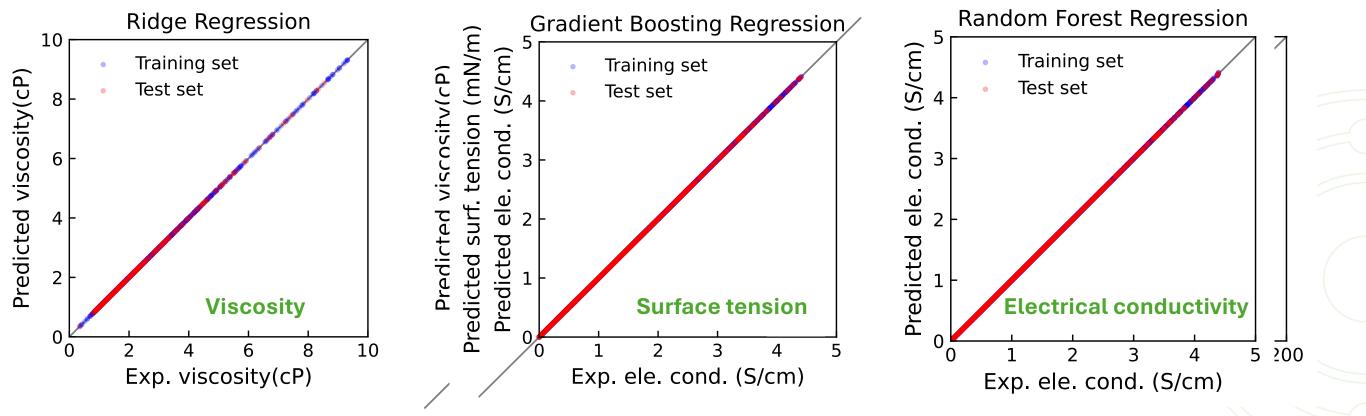


Error metrics for regression models of the liquid density

Regression method		Training set		Test set			
Regression method	RMSE, gcm ⁻³	MAE, gcm ⁻³	R ²	RMSE, gcm ⁻³	MAE, gcm ⁻³	R ²	
Ridge	0.106	0.071	0.980	0.115	0.074	0.979	
Lasso	0.116	0.080	0.977	0.121	0.081	0.978	
Gradient Boosting	0.008	0.005	1.000	0.027	0.015	0.999	
Gaussian Process	0.050	0.037	0.996	0.216	0.058	0.925	
Random Forest	0.016	0.010	1.000	0.041	0.025	0.997	
Artificial Neural Network	0.040	0.030	0.997	0.044	0.033	0.997	

Office of Nuclear Energy

Likewise, viscosity, surface tension, and electrical conductivity were investigated



Very promising predictive models were trained. ullet

Milestone #2 - M3AT-25PN0705062

Description:

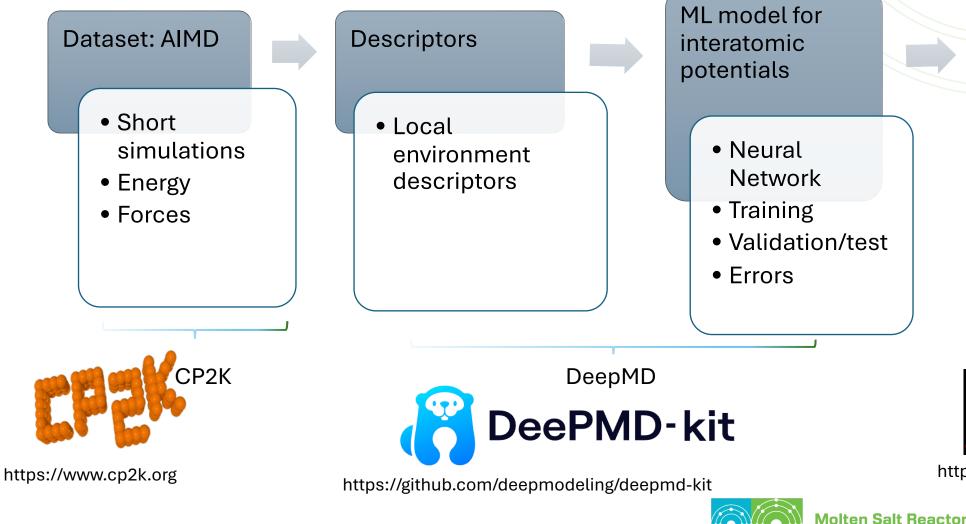
• Determine the thermophysical and structural properties of NaCl-PuCl₃-AmCl₃ molten salt systems using atomistic modeling.

Milestone:

• M3 (Sep 30, 2025)

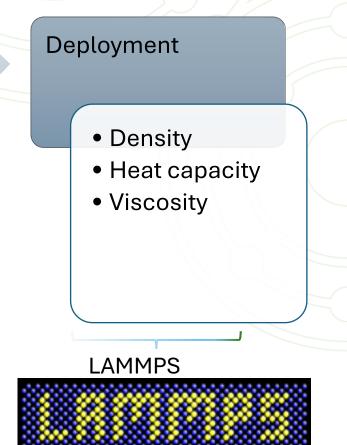
We used machine learning interatomic potentials, trained on ab initio molecular dynamics data, to accelerate simulations

- Ab initio molecular dynamics (AIMD): accurate but computationally demanding
- Machine learning interatomic potentials, trained on potential energy surfaces calculated by AIMD, provide a viable approach.



4/16/25

Manh-Thuong Nguyen, PNNL



https://www.lammps.org

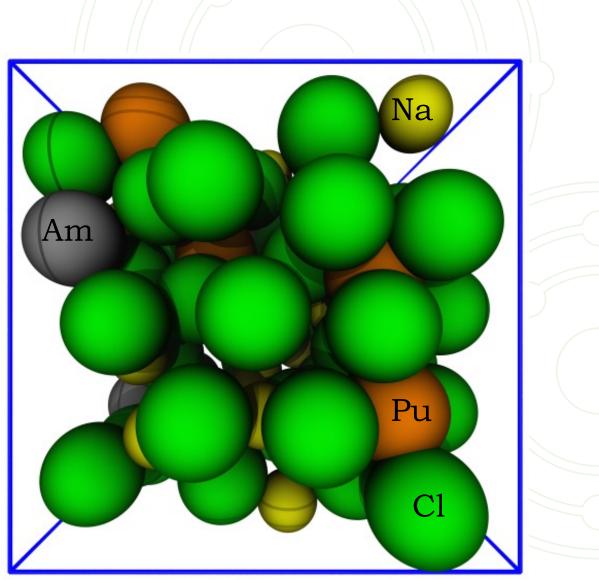
Datasets were generated using AIMD

Computational recipe:

- revPBE-vdW density functional
- DZVP basis sets
- GTH pseudopotentials
- NPT ensemble, dt=2.5 fs
- Classical molecular dynamics equilibrated systems as starting points
- T= 900, 1100, and 1100 K
- CP2K code

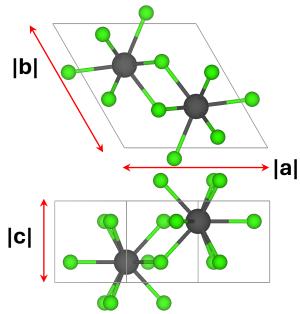
*NaCI-PuCl*₃-*AmCl*₃ system:

- Composition: NaCI:PuCl₃:AmCl₃=0.55:0.31:0.14
- Totally, 84 atoms / box



Computational method accurately predicts lattice constants of solids

AmCl₃ & PuCl₃



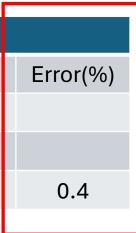
NaCl |d|

Asprey et al., Inorg. Chem. 1965, 4, 7, 985–986 Burns et al., J. Inorg. Nucl. Chem. 1975, 37, 743-749

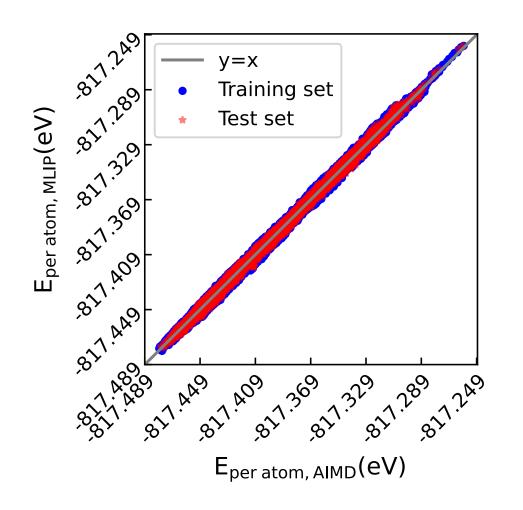
- group
- NaCl: cubic Fm-3m space group ●
- Theory in agreement with experiment

		AmCl₃			PuCl ₃			NaCl
	Theory	Exp.	Error(%)	Theory	Exp.	Error(%)	Theory	Exp.
a = b (Å)	7.337	7.390	0.7	7.330	7.394	0.8		
c (Å)	4.234	4.234	~0.0	4.296	4.243	1.3		
d (Å)							5.665	5.640

AmCl₃, PuCl₃: hexagonal P6_3/m space



Machine learning interatomic potential (MLIP) is accurate



- DeepMD method
- 4x10⁴ frames for training set
- 1x10⁴ frames for test set •
- Loss function for energy and force
- 6.5 Å cutoff •
- {250,250,250} fitting network
- Small energy and force errors •

	Training set
Energy MAE/atom (meV)	1.59
Energy RMSE/atom (meV)	1.99
Force MAE (meV/Å)	60
Force RMSE (meV/Å)	81

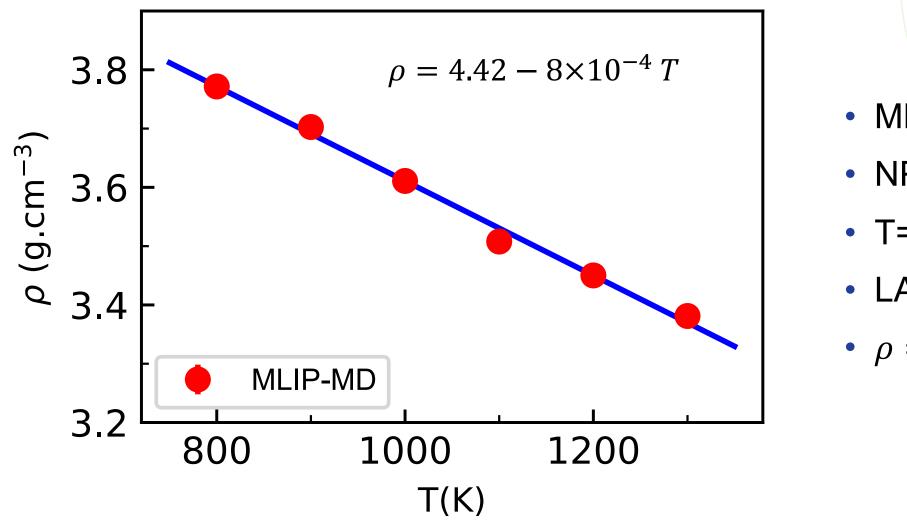
1.60

2.01

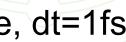
65

84

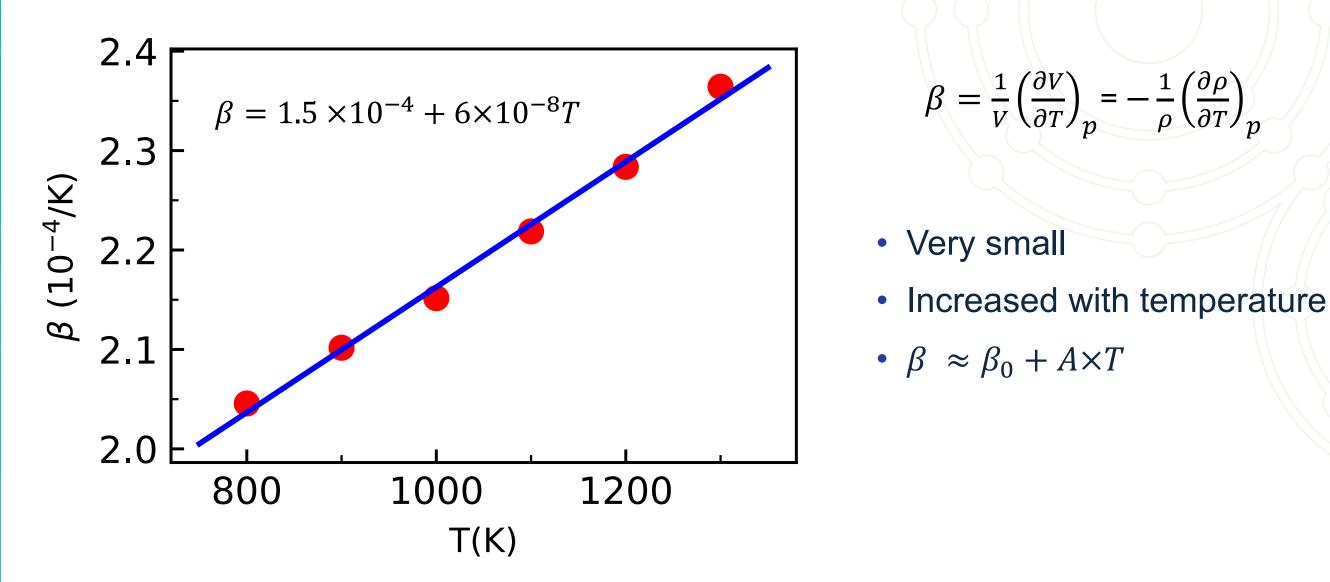
Liquid density was calculated over a range of temperatures



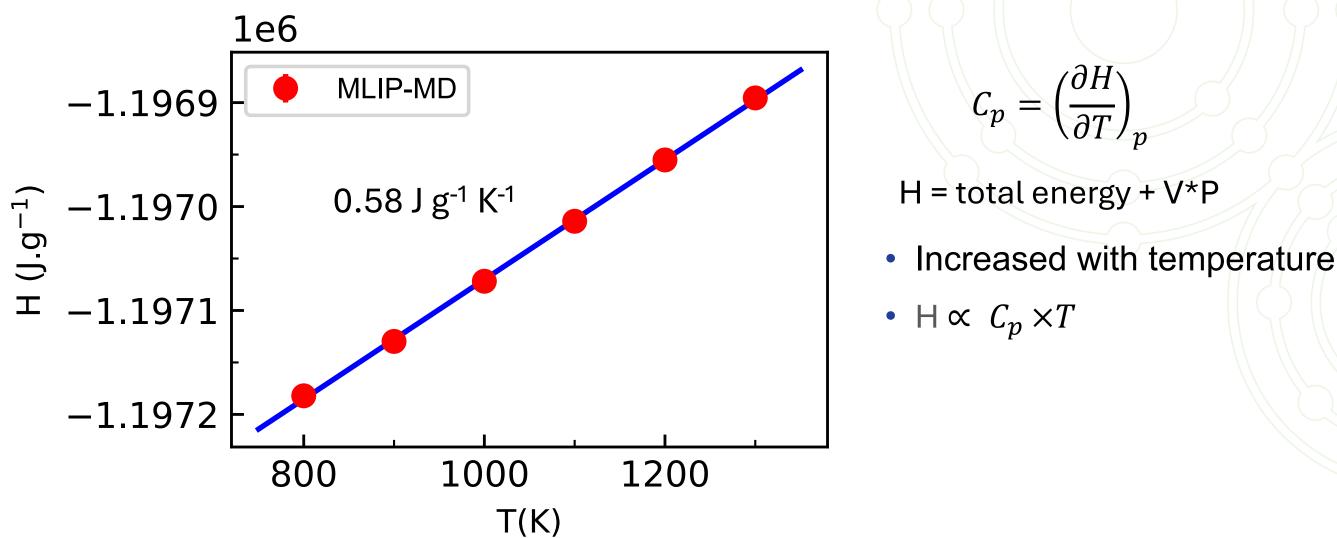
- MLIP molecular dynamics
- NPT ensemble, dt=1fs
- T= 800-1300 K
- LAMMPS code
- $\rho = \rho_0 A \times T$



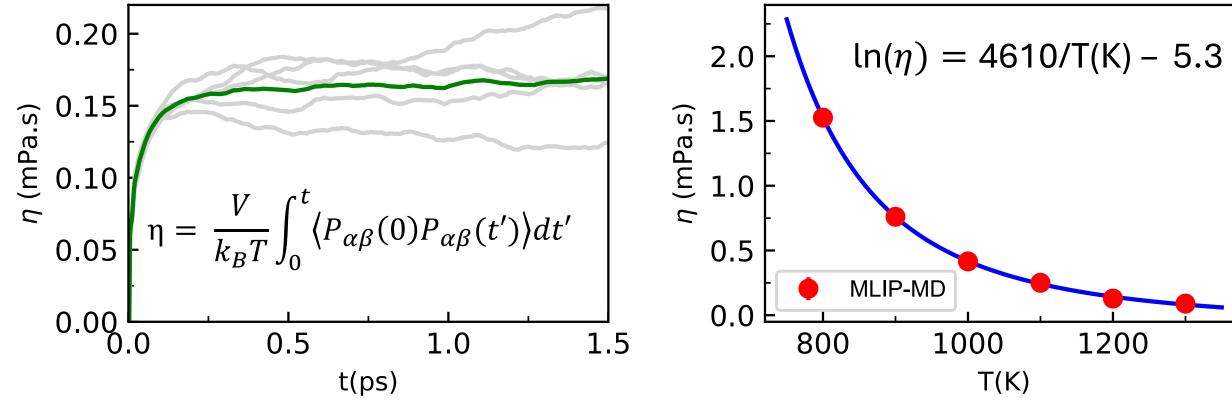
Thermal expansion coefficient was calculated through the density



Constant pressure heat capacity C_p was predicted through enthalpy



Viscosity was calculated using the Green-Kubo formalism



- Multiple simulations for 1 data point
- Decreased with temperature
- Arrhenius relationship

Publications and Presentations

Peer-reviewed journals:

Manh-Thuong Nguyen, Michael Woods, Juliano Schorne-Pinto, Nick Erfurth, Toni Karlsson, "Thermophysical Properties of NaCI-UCI₃-PuCI₃ Molten Salts: A Combined Computational and Experimental Study", submitted to ACS Applied Energy Materials

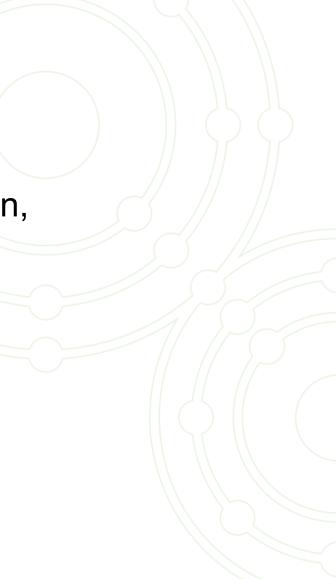
Presentations:

- "Structural and Transport Properties of Actinide-Containing Molten Salts: Machine Learning -based Studies", invited talk at XXth Rencontres du Vietnam Materials Informatics: Accelerating Materials Research and Design with Artificial Intelligence. August 2024. Quynhon, Vietnam & Online, Vietnam.
- "Machine Learning -based Studies of Actinide Molten Salts", poster at 2024 Molten Salt Reactor Workshop, November 2024. Knoxville, TN 37902, USA.
- "Exploring Liquid Complexity: Electronic Structure Theory, Statistical Mechanics and Data Science based Modeling of Molten Salts", seminar at Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA. November 2024.

Office of Nuclear Energy

Acknowledgements

- DOE, Office of Nuclear Energy Janelle Eddins
- MSR campaign Patricia Paviet, Heather Colburn, Zander Westesen, Michele Enders, and others.
- Megan Lam (PNNL undergraduate intern, WSU)



Thank you

manhthuong.nguyen@pnnl.gov

