

Laser-Induced Breakdown Spectroscopy for Elemental Monitoring of MSR Off-Gas Streams Hunter Andrews, Zechariah Kitzhaber, Daniel Orea, Joanna McFarlane Oak Ridge National Laboratory

Office of Nuclear Energy

es

To aid deployment we are developing technology for off-gas treatment

- Quantify fission and activation products in off-gas system
- Monitor off-gas treatment component efficiency

Riley et al. Nuclear Engineering and Design, 2019, 345, 94-109. Andrews et al. Nuclear Engineering and Design, 2021, 385, 111529.

MSRs offer great benefit and challenges

Laser-Induced Breakdown Spectroscopy (LIBS)

Molten Salt Reactor 0 G

Taking things one step further...

- Mobile LIBS platform for deployment
- Investigating molten aerosol transport
- Correlation between aerosol concentration and signal
- Elemental and isotopic monitoring
- **Continuous** gas monitoring •

Andrews et al. JACS. 2025. 147 (1), 910-917. Kitzhaber et al. 2025. Under review. Andrews et al. 2025. Under review

Molten salt aerosol stand and mobile LIBS platform

Molten Salt Reactor R 0 G

Sparge sampling and nebulization were compared

Sparging at low flow rates appears optimal

Molten Salt Reactor ROGRAN

Kitzhaber et al. 2025. Under review.

LIBS signal is related to aerosol concentration and the composition of the salt itself

Signal vs Aerosol Concentration / Sparge Rate

Signal vs Trace Analyte Composition

LIBS signal measured > 0.08 µg L⁻¹

 $LOD_{Sr} = 0.29 \text{ wt}\%_{Na} \sim 350 \text{ }\mu\text{g mL}^{-1}$ in the bulk $LOD_{11} = 0.14 \text{ wt}\%_{Na} \sim 170 \mu \text{g mL}^{-1}$ in the bulk

Kitzhaber et al. 2025. Under review.

The LIBS Platform allows for easy changing between the monitored sample lines

Molten Salt Reactor Ο

Andrews et al. 2025. Under review.

Switching between He and Ar bulk gases will directly impact the LIBS plasma

Plasma Temperature vs Flow Rate / Laser Power

Electron density vs Flow Rate / Laser Power

Not only does the bulk gas impact the signal, but so do other analytes

Xe and Kr in He and Ar Bulk Gases

A Closer Look at Matrix Effects

Fortunately, we can handle matrix effects using multivariate modeling methods

Parity Plots Showing Prediction Accuracy

Detection Limits

alculated LOD values for Xe and Kr in various bulk gase as a function of the number of shots accumulated.							
		Limits of Detection					
	Time	Xe in	Kr in	Xe in	Kr in		
Shots	Resolution	Не	Не	Ar	Ar		
	(s)	(ppm)	(ppm)	(ppm)	(ppm)		
50	2.5	55.0	40.9	57.6	63.1		
100	5.0	43.4	36.6	51.6	62.0		
200	10	36.1	34.8	48.0	61.3		
500	25	30.5	34.4	46.5	61.1		
1000	50	28.4	33.8	45.7	61.2		
5000	250	22.9	30.4	42.5	54.7		

Parity plots for PLSR models of (a) Xe in He, (b) Kr in He, (c) Xe in Ar, and (d) Kr in Ar. Note, the black 1:1 line represents a perfect prediction.

Fortunately, we can handle matrix effects using multivariate modeling methods

Parity Plots Showing Prediction Accuracy

Detection Limits

Shots	Time Resolution (s)	Limits of Detection				
		Xe in He (ppm)	Kr in He (ppm)	Xe in Ar (ppm)	Kr in Ar (ppm)	
50	2.5	55.0	40.9	57.6	63.1	
100	5.0	43.4	36.6	51.6	62.0	
200	10	36.1	34.8	48.0	61.3	
500	25	30.5	34.4	46.5	61.1	
1000	50	28.4	33.8	45.7	61.2	
5000	250	22.9	30.4	42.5	54.7	

Parity plots for PLSR models of (a) Xe in He, (b) Kr in He, (c) Xe in Ar, and (d) Kr in Ar. Note, the black 1:1 line represents a perfect prediction.

Despite all these differences we can still accurately track noble gases in real-time

Elemental and Isotopics

 The full power of LIBS is realized when combining aerosol detection, gas monitoring, and extending compositional measurements to isotopic ratios

pubs.acs.org/JACS

Real-Time Elemental and Isotopic Measurements of Molten Salt Systems through Laser-Induced Breakdown Spectroscopy

Hunter B. Andrews,* Zechariah B. Kitzhaber, Daniel Orea, and Joanna McFarlane

Nolten Salt Reactor

Article

The power of LIBS can truly be seen when we monitor mixed-phase sample streams

Monitoring the release of H after saturation

Andrews et al. JACS. 2025.

KNO₃-NaO₃ Eutectic salt at ~450 deg C

16

LIBS allows us a unique inspection of our molten salt experiments

Monitoring the release of H after saturation when the salt vessel is swept with Ar vs sparged with Ar.

- •
- diffusion
- removal

Andrews et al. JACS. 2025.

Ratio of sparge and sweep areas indicated ~14% holdup of H_2 in the salt The fitted mass transfer profiles are proportional to

Elevated O regions indicate differences in H₂O and H₂

Pushing LIBS resolution to the limit provides isotopic information

Salt was saturated in D_2 and then sparged

Using a previous model, transferred using the pure H sparge data, H/D ratios could be quantified!

Mass transfer profiles indicate mass differences in H_2 and D_2 gasses of 67%. The quantified H/D levels via LIBS match this.

Andrews et al. JACS. 2025.

R

OGR

Ever forward – where do we go from here?

How does the aerosol signal change with bulk gas?

How low can we push our detection limits?

Jolten Salt Reactor G R A M

How can we optimize aerosol transport for remote sampling?

Thank you

Reach out via e-mail: andrewshb@ornl.gov

Molten Salt Reactor M O G R A

The MSR Campaign team is making headway in deployable sensors and wants to work together with academia and industry to enable the continued development and deployment of MSRs.

Molten Salt Reactor P R O G R A M

Liquid LIBS flow cell for molten salts is in development

Molten Salt Reactor

22

Plasma temperature and electron density can be calculated from the emission peak behavior

Surmick and Parigger. IRAMP. 2014.

Plasma temperature and electron density can be calculated from the emission peak behavior

Bredice Plot provides the shape of the plasma temperature in time

Boltzmann Plot provides the temperature at time ~0

24