PNNL SA-210593

Fluid inclusions in chloride salts – characterization and mitigation

Kyle Makovsky, Michaella Harris, Ji-Hye Seo*

Molten Salt Reactor Campaign Annual Review 22-24 April 2025

Outline

- Introduction to fluid inclusions
- Presence of fluid inclusions in salts
- Preliminary vacuum oven experiment
- Preliminary quantification results of fluid inclusions: Imaging of salts

2

Introduction

- Use PNNL expertise to perform thermophysical property measurements
 - Density via TMA
 - Heat Capacity via Drop Calorimetry
 - Volatility via XRD and EGA
- Achievements to date:
 - 1. Improvement of sample preparation methodology for thermophysical property data
 - 2. Density and volatility method development
 - 3. Thermophysical property data collection on the KCl-MgCl₂ binary system
 - 4. Error analysis for drop calorimetry using principles of the Guide to the Expression of Uncertainty in Measurement (GUM; JCGM 100:2008)
 - 5. Salt fluid inclusion characterization

Molten Salt Reactor

Fluid Inclusions

American Elements KCl 99.999% pure (metals basis)

Formation of Fluid Inclusions

- Skeletal growth of crystals
 - Lack of nutrients at crystal center relative to edges
 - Undercooling
- Constitutional supersaturation
- Rapid crystal growth
- Favorable wetting characteristics

American Elements KCl 99.999% pure

Preservation of Fluid Inclusions

- Preserved at elevated temperatures
- However, fluid may escape if pressures induced by expansion (e.g., heating or decompression) exceed elastic modulus of the host mineral

Figure from Kerkhof et al. (2014)

Diagram from: https://commons.wikimedia.org/wiki/File:Metamorphic_Facies_Diagram.png

Presence of fluid Inclusions in Salts

- Likely in all salts precipitated from an aqueous solution
- Absolute number of inclusions depends on:
 - Kinetics of crystal formation
 - Thermodynamic conditions at solutioncrystal interface
 - Wetting characteristics
 - Diffusivity of nutrients in aqueous solution (e.g., K, Na, etc.)

Decrepitation Study on SiO_2 ; 0.5% by volume!

Size range	average diameter	inclusions/gram	total volume cc
1-5 <i>u</i>	2 <i>u</i>	1394 million	1.4 * 10 ⁻³
5-10 <i>u</i>	7 <i>u</i>	80 million	2.8 * 10 ⁻⁴
10-20 <i>u</i>	15 <i>u</i>	42 million	3 * 10 ⁻⁴
>20 u	25 u	20 million	2.5 * 10 ⁻⁴
TOTAL		1536 million	2.23 * 10 ⁻³

https://www.appliedminex.com/decrep/general/ficalc.htm

Questions to Answer

- 1. What salt species originate from aqueous precipitation?
 - Process driven?
 - Manufacturer specific?
- 2. Can the process of manufacture be tailored towards conditions unfavorable for the creation of fluid inclusions?
- 3. Alternatively, for the end-user of the salts, is post-processing of salts to remove fluid inclusions:
 - Possible?
 - More economical?
- 4. The million-dollar question- how have fluid inclusions affected the results of previously measured thermophysical properties and how do we mitigate their effects on future lab-scale measurements?

Preliminary Vacuum Oven Experiment

- American Elements 99.999% pure (metals basis) KCl and NaCl
- 1 g weighed and transferred into 20 mL scintillation vial
- Experiment 1- hold for 8 hr at 100 °C
- Experiment 2- using same salt, hold for 8 hr at 200 °C

NaCl Post 200 °C

Preliminary Vacuum Oven Experiment

Fluid Inclusions in Stages of Growth

NaCl Post 200 °C

Figure modified from Kretz (2003) and https://www.alexstrekeisen.it/english/vulc/skeletal.php

Capturing Fluid Inclusions in Salts

- Keyence VHX-7000
 - Transmitted light
 - Depth profile (z-height)
 - ImageJ for inclusion size
- Three samples of NaCl and KCl from three different vendors and timeframes
- One in-house synthesized PuCl₄-KCl
- Only analyzing two-phase (liquid-gas) inclusions

NaCl

- SPEX
 - Purity not listed
 - 1992
- Suprapur® Millipore
 - 99.99%
 - 2019
- Thermo Fischer Ultra Dry
 - 99.99% metal basis
 - 2019

NaCl

KCl

- Baker Analyzed
 - 99.8% metal basis
 - 1998
- American Elements
 - 99.999% metal basis
 - 2019
- Thermo Fisher Ultra Dry
 - 99.99% metal basis
 - 2024

50 µm

55.1

1.56%

PuCl₄

- Dissolution
 - HCl to dissolve starting material
 - KOH to convert to Pu(OH)₄
 - HCl added with KCl to dissolve
 - Distillation set up to boil off remaining solutions.
 - Salt left to dry
- Many assumed single phase inclusions
- <5 µm in surface area twophase were found

Conclusions

- Fluid inclusions are preserved in commercial salts.
- Assuming all fluid inclusions are water, the water content in these inclusions can be up to 2%. Considering hydroscopic nature of salts, the total water content in these salts can exceed 2%.
 - Depending on the salt compositions being studied inclusions will impact overall properties.
- Fluid inclusions likely to contain high concentrations of water (synthesized media) or gaseous impurities.

Future Work

Continue taking images of fluid inclusions in various salts

Salt and inclusion characterization

- Micro Raman
- Laser Induced Breakdown Spectroscopy (LIBS)
- Cryo-Scanning Electron Microscopy (SEM)

Acknowledgments

- DOE-NE MSR Campaign
- The thermal team at PNNL
 - Kyle Makovsky
 - Michaella Harris
 - Kent Detrick
- Patricia Paviet for continued support

Molten Salt Reactor R G R M

Office of **NUCLEAR ENERGY**

Molten Salt Reactor

Thank you

Kyle.Makovsky@pnnl.gov

Office of **NUCLEAR ENERGY**