

Salt Loop and Capability for Testing Sensors and Off Gas Components

Kevin Robb

Oak Ridge National Laboratory

MSR Campaign Annual Review, April 22-24, 2025, PNNL

Office of Nuclear Energy

es

FY25 PICS milestones (upcoming M3)

Milestone Number	Description	Status as of 03-
M3AT-25OR0702021	Complete molten salt loop collaborative test campaign with novel sensors	Due 9-30-2025

-31-2025 (end of Q2)

Facility to Alleviate Salt Technology Risks (FASTR)

- High-temperature forced-flow **chloride** salt test facility
 - Largest chloride salt loop for open R&D to have operated (in open literature)
- Current goals:
 - Novel sensor tests (flow, pressure, and EChem)
 - Demonstration of chemistry and corrosion control
 - Demonstrate and de-risk components
 - Digital twin development and integration

Purification Vessel

NaCl-KCl-MgCl ₂
725°C
≤7.0 kg/s
C-276
155 L
400 kW
5.20 cm
Dec. 2022

FASTR Forced-Circulation Loop

What are we trying to do?

- **Re-establish foundational US infrastructure** (facilities and personnel expertise) to enable 1. innovation and advance technologies for MSR applications
 - The facilities are the largest and most capable within DOE complex
 - Prepare the next generation workforce with hands-on experience on engineering-scale salt facilities.
 - Spur the supply chain and act as first mover on first-of-a-kind needs
- **Accelerate MSR deployment** by bridging the gap between research and commercial 2. deployment
 - De-risk sensors to monitor species transport and salt chemistry in situ.
 - Conduct component testing in prototypic environments, *beyond bench scale*, to understand practical operations and to optimize reliability, risks, and costs
 - Open to universities, laboratories, and component developers that don't have similar capability
- 3. Enhance confidence in salt community (MSR developers, regulators, component developers, and other invested entities)
 - Serve as an open test facility and trusted 3rd party with published results
 - Establish knowledgebase for code validation, component/system performance, and demonstrated successes

Reminder of Recent Journey

LSTL modification and preparation

- Installed new test section, filter, and piping
- CFD analysis investigating flow field and forces
- Installed Raman probe (PNNL) and E-Chem sensor (ANL)

FY22

First operation of FASTR (ORNL/TM-2023/2846) Operation of LSTL (ORNL/LTR-2023/3087)

- Initial 4 aerosol tests
- Test flowmeter for VT (*NEUP*)
- Initial Kr injection/measure test
- Modeling info for SAM (ORNL) and MELCOR (SNL) ٠
- Raman probe exposure (PNNL) and E-Chem sensor test (ANL)

FY24

- Operation of FASTR (ORNL/LTR-2024/3671)
- 11 aerosol tests
- Ran 7 pump speeds
- Initial pump vibration data
- E-Chem sensor (ANL) run
- Raman probe (PNNL) exposed ~558h @ >500 C
- Test pressure and flow sensors (SBIR)

Operation of FASTR See later slides

FASTR Progress FY24 (~after previous campaign review)

- Several maintenance activities were completed
- Conducted eleven aerosol tests
- Add accelerometers, ran 7 pump speeds, and collected first pump vibration data
- PNNL Raman probe exposed ~558h @ >500 C
- ANL sensor run, salt appears similar to last time it was run
- SBIR sensor tests of a pressure and flow sensor
- Collaborated with Sandia National Laboratories (SNL) and ORNL colleagues to develop computational models of the LSTL and FASTR systems.

Molten Salt Reactor

ORNL/LTR-2024/3671

6

FASTR Plans & Progress FY25

- Plans: •
 - Install and test PNNL Raman probe and ORNL LIBS system
 - Operate ANL multifunctional voltammetry sensors
 - Aerosol characterization tests try taking pump bowl measurement(s)
 - Add pressure transducer near pump outlet
 - Gain operation experience and time
 - Kr injection test (if resources allow)
 - Effort to test flow meter (if resources allow)
- Progress:
 - Installed 2x tachometer on pump to monitor shaft and seal speed (concern over potential seal slippage and/or other pump challenges)
 - Discussed plans with PNNL (Raman) and ORNL (LIBS) to test their sensors during next operation
 - Received gas mass flow controllers to replace temporary spares used last FY
 - Acquired flange and working to install salt-wetted pressure transducer
 - Enable pump discharge pressure measurement \rightarrow hydraulic data \rightarrow more useful dataset for modelers •

FASTR Plans FY25

Category	FY24	FY25
Sensors	Expose PNNL Raman probe	Operate PNNL Raman s
Sensors	Operate ANL multifunctional voltammetry sensor	Operate ANL multifunc [®] voltammetry sensor, ex
Sensors	1 st round testing for small business (P and Flow) EERE SBIR	2 nd round testing of sen business (<i>P and Flow</i>)
Performance	7 pump speeds, initial vibration data	4+ pump speeds
Performance	Run time	Run time
Data		↑ obtain pump dischar
Data		↑ system hydraulic data
Aerosol Data	11 storage tank tests	≥1 pump tank tests
Species Transport Data		Kr injection if resources

system on off-gas

tional tended duration

sors from small

ge pressure data

allows

FASTR Future

- Similar to LSTL vision: Focus on species transport and sensor exposure/testing
 - Species injection, start with noble gases and work toward more interesting chemistry
 - Expose/test sensors (Raman, electrochemical, LIBS, traditional P, T, m)
 - Demonstration corrosion control
- Continue aerosol characterization (Important for practical operations & mitigation measures)
- Add/increase focus on verifying flow measurement
 - Broad stakeholder need defensible flow rates
- Provide info for modeling: SAM (ORNL, ANL), MELCOR (SNL), others?
- Increase run time and socialize operation experience
- Run ΔT tests with high-powered heater/heat exchanger for more-prototypic condition testing

Liquid Salt Test Loop (LSTL)

- Versatile high-temperature forced-flow fluoride salt test facility
 - One of very few salt loops in the U.S., with salt re-purification capability, with relevant power and flow
 - FLiNaK provides relevant salt environment for RD&D

Salt	NaF-KF-LiF
Operating Temp.	700°C
Flow rate	≤4.5 kg/s
Primary Material	Inconel 600
Salt volume	80 L
Power	200 kW
Primary piping ID	2.67 cm
Initial operation	Summer 2016

LSTL Forced-Circulation Loop

Office of Nuclear Energy

Salt Pot Instrumentation and Components Evaluation Experiment (SPICEE)

Salt	Cl or F-based	
Operating temp.	710°C @ 0.3 MPa _{abs}	
Flow rate	≤5.8 kg/s	
Operating pressure	Up to 0.3 MPa _{abs}	
Primary materials	SS & Ni	
Salt volume	120 liters	
Power	~27 kW trace	
Primary piping ID	~2.50 cm (1 in.)	
Initial operation	TBD!	

- Demonstrate salt-wetted bearings to <u>enable long-shaft</u> <u>pumps for pool-type reactors</u> and <u>larger sized pump</u>
- Flow calibration stand for <u>development of standards</u> and to <u>calibrate flowmeters</u> for <u>accurate and defensible data</u>

DOE-NE MSR Campaign Support enables communication on lessons learned and safety

- 1. Participated in the IAEA led Consultancy Meeting on the Development of a Technical **Document on the Safety of Molten Salt Reactors (MSRs)**
- 2. Participated in a University's **component failure review**
- 3. Presented/Organized: Chair's Panel: Experimental Practices at MSR Workshop 2024
- 4. Finalized paper: "Some Hazards and Mitigation Considerations for Molten Halide Salt **Experiments**" for 2025 ANS Annual Conference
- 5. Attended Beryllium Health and Safety Committee's FLiBe Subcommittee online meetings
- *Outside MSR Campaign:* •
 - Presented at MIT IRP Led: Lessons Learned Workshop II: Design, Testing and Operation of Molten Salt Loops and Capsules
 - Contributed to summary: "Lessons Learned In How to Conduct Loop and Irradiated Salt Experiments: Workshop II" for 2025 ANS Annual Conference

Thank you

Kevin Robb, robbkr@ornl.gov

