

Iten Salt Reactor G R

Species Tracking in Molten Salt Reactors: Leaching and Plating

Samuel Walker, Mauricio Tano

INL/MIS-25-84440 Rev:000

Office of Nuclear Energy

Content

- 1. Motivation for species tracking in MSRs
- 2. Development of a computational framework for species tracking
- 3. Review of FY24 Activates: Couple **Transport of Soluble and Gaseous Species**
- 4. FY25 Activities: Coupled Transport of **Soluble and Insoluble Metallic Species**
 - Verification against existing corrosion loop 1.
 - Application example to Molten Salt Fast Reactor 2.

Motivation for Species Tracking in MSRs

Office of Nuclear Energy

Species Tacking Behavior in MSRs

5/1/2025 Contact: <u>Samuel.Walker@inl.gov</u> | <u>Mauricio.TanoRetamales@inl.gov</u>

Molten Salt Reactor

ROGRAN

Why do we need to track species?

- Importance of Species Tracking
 - Containment: Where do the radionuclides go? What is the reactor source term?
 - Heat removal: Where do isotopes plate out? How do we cool the reactor?
 - **Reactivity**: Where do the neutron precursors go? What is the reactor β_{eff} ?
 - Corrosion: How do fission products interact with the wall? How long will a barrier last?

Safeguards: Where do the fissile isotopes go? How do we monitor where they are?

Development of Computational Framework for Species Tracking

Office of Nuclear Energy

Main NEAMS tools used for modeling and simulation of MSRs

Coupling **Framework for Species Tracking**

- The coupling framework for species tracking in MSRs involves:
- 1. Griffin: neutronics + depletion
- 2. Pronghorn: thermalhydraulics + species transport
- 3. Thermochimica: chemical equilibrium calculations

Review of FY24 Activities

Coupled Transport of Soluble and Gaseous Species

Office of Nuclear Energy

FY24 work: Coupled Transport of Soluble + **Gaseous Species**

Molten Salt Reactor

Exchange of phases between states y and x

MSRE – Reactivity Insertion Transient

- 100 pcms are ۲ injected in the reactor core at the initial time
- During a reactor ٠ transient, the distribution of void plays a fundamental role in power attenuation
- Additionally, the distribution of void is important in the reactor setpoint after the transient

Figure: power density (left) and salt temperature (right)

Figure: delay neutron precursors of group 3 (left) and void fraction (right)

Office of Nuclear Energy

Evolution of gaseous species during reactivity insertion transient

ROGR

P

FY25Activities

Coupled Transport of Soluble and Insoluble Metallic Species

Office of Nuclear Energy

Motivation: Dispersion in Mass Transfer Correlations

- A lot of dispersion is observed in the mass transfer coefficients used for MSRE
- A more refined mechanistic approach is needed for mass transfer

Correlation	Applicability	$k_m [ms^{-1}]$ range
Dittus-Boelter Analog	Turbulent pipes	[2.14e-06, 2.14e-04]
Graetz	Laminar / Laminarization	[9.55e-07, 6.50e-06]
Ranz–Marshall	Bubbly Flow	[4.57e-06, 8.04e-05]
Kedl's constant	Bubble Film	1.50e-04

FY25 work: Coupled Transport of Soluble + **Insoluble Metallic Particulate Species**

5/1/2025

Contact: Samuel.Walker@inl.gov | Mauricio.TanoRetamales@inl.gov

Verification against existing Poisson-Nernst-Planck Model and Molten Salt Loop Experiment

FLiNaK salt. Journal of Nuclear Materials, 561, 153551.

Predicted Concentration [wppm]	Cr	Fe	
Experiment	255 <u>+</u> 28	60 ± 8	
Mechanistic model	235	75	
PNP model	251	72	
Thermochimica model	861	69	
Remaining amou	nts in the s	alt	

Molten Salt Reactor R OGRAN

Raiman, S. S., Kurley, J. M., Sulejmanovic, D., Willoughby, A., Nelson, S., Mao, K., ... & Pint, B. A. (2022). Corrosion of 316H stainless steel in flowing

Equilibrium Concentration of FeF₂ in FLiNaK loop: (left) PNP Results; (right) Pronghorn + Thermochimica Results

Equilibrium Source Terms from Thermochimica: (Left) FeF₂; (right) Sum of CrF_2 and CrF_3

Molten Salt Reactor BOGBA

Application to Molten Salt Fast Reactor (MSFR)

Velocity Profile in MSFR at Steady State

Molten Salt Reactor O G

Temperature Profile in MSFR at Steady State

5/1/2025

Contact: Samuel.Walker@inl.gov | Mauricio.TanoRetamales@inl.gov

Demonstration Problem

Tracking Hot-Leg Corrosion – Cold-Leg Deposition with Colloid precipitation via Pronghorn + Thermochimica model

Liquid Cr Equation

Metallic Cr Colloids

Equation

$$\frac{\partial Cr_l^{\mathcal{X}}}{\partial t} + \nabla \cdot \left(\frac{\boldsymbol{u}}{\gamma} Cr_l^{\mathcal{X}}\right) - \nabla \cdot \left[\left(D_{Cr_l^{\mathcal{X}}} + \frac{\nu_t}{Sc_t}\right) \nabla Cr_l^{\mathcal{X}}\right] = -h^{l-s}(Cr_l^{\mathcal{X}} - L^{l-s})$$

Exchange of phases between liquid and solid wall interface

$$\frac{\partial Cr_c^{\mathcal{X}}}{\partial t} + \nabla \cdot \left(\frac{\boldsymbol{u}}{\gamma} Cr_c^{\mathcal{X}}\right) - \nabla \cdot \left[\left(D_{Cr_c^{\mathcal{X}}} + \frac{\nu_t}{Sc_t}\right) \nabla Cr_c^{\mathcal{X}}\right] = -h^{l-c}(Cr_c^{\mathcal{X}})$$

Exchange of phases between liquid and colloids in bulk

<u>NOTE</u>: Cr_l^* and Cr_s^* terms comes directly from Thermochimica equilibrium calculation to determine phase change (melting/precipitation) due to redox and temperature changes.

Molten Salt Reactor

Solid Cr Wall Equation

Exchange of phases between liquid and solid wall interface

Mass Transfer of colloids adhering to wall interface

 $-Cr_{l}^{*}) + h^{l-c}(Cr_{c}^{\chi} - Cr_{s}^{*})$

Exchange of phases between liquid and colloids in bulk

 $r_c^{\chi} - Cr_s^*)) - h^{c-s}(Cr_c^{\chi} - 0)$

Mass Transfer of colloids adhering to wall interface

MSFR: Chromium Leaching

Significant chromium loss at top of hot reactor core and minimal deposition in cold plenum entrance after heat exchange

Corresponding Cr_l^* source term from Thermochimica driving chromium corrosion

Molten Salt Reactor ROGRA

5/1/2025

Contact: Samuel.Walker@inl.gov | Mauricio.TanoRetamales@inl.gov

MSFR: Chromium Leaching – impact of temperature

Equilibrium liquid chromium concentration in MSFR

Corresponding equilibrium colloid chromium concentration in MSFR

Molten Salt Reactor

5/1/2025

Corresponding Cr_s^* source term from Thermochimica driving metallic chromium precipitation in cold leg of MSFR

MSFR: Iron Leaching – impact of redox potential

Contact: Samuel.Walker@inl.gov | Mauricio.TanoRetamales@inl.gov

Effect of Redox Potential on Leaching

Effect of Redox Potential on Leaching

Increasing Redox Potential due to Depletion – driving higher solubility of Chromium in Fuel Salt

Decrease of redox potential at end of life due to end of depletion and buffer by chromium equilibrium in the fuel salt (illustrated by colloid formation in cold leg)

----Liquid Chromium

--- Chromium Colloid

Effect of Noble Metal Decay Heat

Initial increased deposition of solid Molybdenum on wall and gradual decay after reactor scram (Pump and Power shut down)

Temperature decrease and re-heating from walls due to noble metal decay after reactor scram (Pump and Power shut down)

Molten Salt Reactor

Conclusions and Future Work

• Key conclusions:

- New framework for coupled soluble + metallic species tracking has been implemented using **NEAMS** tools
- The model has been implemented for a Molten Salt Loop Experiment and compared against higher fidelity PNP model and applied to MSFR and shows importance of species tracking for corrosion and noble metal decay heat modeling for reactor design and safety analyses.

Ongoing work:

- Further refined validation of model results against Molten Salt Loop Experient utilizing correct alloy database in Thermochimica for molten salt with metallic alloy thermochemical equilibrium calculations.
- Validation of complete species transport (soluble, gaseous, metallic) results against MSRE composition measurements in salt samples, off-gas measurements, and heat exchanger.
- Application of plating/leaching model to model electrochemistry in various applications (i.e., fuel-salt production, electrorefining, fluorination etc.)

Email: <u>Samuel.Walker@inl.go</u>v

Email: <u>Mauricio.TanoRetamales@inl.gov</u>

Thank you!

Any Questions?

Contact: Samuel Walker – Samuel.Walker@inl.gov Mauricio Tano – Mauricio.TanoRetamales@inl.gov

