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Grand Question
Can beryllium carbide be used in future reactors as a replacement moderator for 
graphite?

Long-term (10+ years) to answer this question, but can perform  preliminary screening



Why Beryllium Carbide?

• High moderating efficiency and low absorption 
cross section

• Be slowing down power ~2.5x > than carbon

• Chemically compatible with coolant salts

• Antifluorite crystal structure – the same crystalline 
configuration (with anions and cations reversed) as 
exceptionally radiation damage resistant fluorite 
type crystals (e.g., UO2)
• The anti-fluorite crystal (Li2O) has also been shown to 

have high radiation damage tolerance [1,2]

4[1] Moriyama et al., Journal of Nuclear Materials, 258-263, (1998) 587-594.

[2] Noda, et al., Journal of Nuclear Materials, 123, (1984) 908-912 

Campbell & Burchell Timothy D. (2020). Radiation Effects 

in Graphite. Comprehensive Nuclear Materials 2nd edition, 

vol. 3, pp. 398–436



Technical Challenges with Beryllium Carbide

• Long history of graphite as neutron moderators (CP-1, X-10 
~80 years) research and knowledge – only limited low dose 
studies in Be2C [1-3]

• Be2C is brittle, vulnerable to thermal stress cracking
• Can we mitigate brittle nature via fiber reinforcement?

• Be2C is toxic, moisture sensitive, chemically reacts with U
• Would need a protective layer (NbC)

• Be2C is a methanide (when exposed to H it decomposes 
into methane)
• Can this be utilized for tritium management strategy? 
• Methane is easily trapped and doesn’t diffuse through metal 

alloys
• Be does have gas generating reactions with neutrons (He 

and 3H)
• May be beneficial for fusion systems for 3H production
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[1] Maya et al., GA-A-17842; (1985)

[2] Marion & Muenzer, SAND--78-0227C, CONF-780622, (1978)
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Be gas generating reactions (data from ENDF/B-VIII.0)



What are the first steps?

• Need solid Be2C samples – concern is production and processing is 
export controlled technology

• Understand high temperature stability of Be2C
• Preliminary understanding of irradiation effects in Be2C
• Degradation behavior when exposed to hydrogen
• Understand thermal properties
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High Temperature 
Stability Testing
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Phase Composition Measurement

• Make Kapton packets, load Be2C into packet and 
seal shut with 2 pieces of Kapton tape

• Panalytical X’pert diffractometer (CuKα) 
• θ-2θ setup 20 – 100° 2θ, with a scan rate of 0.0167 deg/s 

(~30 minute scan time), 1/4° fixed slits, 1/2° anti-scatter 
slit, 0.04 soller slits coupled with a 10 mm mask, and 
zero-background plate was positioned below the 
specimens to remove any peaks from the metal 
specimen stage

• Phase identification used a search match with the Jade 
software and the ICDD database
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Static Capsule Testing

• Mass specimens
• Specimens loaded into 316L stainless steel double-

containment capsules
• Fill with desired environment (Ar gas)
• Electron beam welded shut
• Put into box furnace at desired temperature for pre-

determined time
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Inner and outer 
capsules

(courtesy J. Keiser)

Before exposure

After exposure



Post-Exposure Analysis

• Open capsules
• Remeasure specimen mass (mass 

loss)
• Package in new Kapton packets
• XRD (determine phase composition)
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Summary of Changes 650°C Exposures

Specimen 

#

Exposure 

Time

Pre-exposure 

mass (g)

Post-exposure 

mass (g)

Mass loss 

(%)

Be2C Phase %

before / after

BeO Phase %

before / after

Graphite Phase %

before / after

1 1 day 0.5596 0.5559 0.66 90.2 / 87.2 7.0 / 7.3 2.1 / 5.5

2 1 week 0.6283 0.6234 0.78 89.9 / 82.6 6.9 / 6.9 3.2 / 10.4

3 2 weeks 0.5960 0.5939 0.35 89.6 / 84.4 7.1 / 7.6 3.3 / 8.0
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Before exposure After exposure

Specimens have dull grey finish 
before exposure.
After exposure, all specimens have 
dark surface (graphite buildup as Be 
converts to BeO and sloughs off?)
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Additional Temperature Exposures

Specimen 

#

Exposure 

Time

Pre-exposure 

mass (g)

Post-

exposure 

mass (g)

Mass loss 

(%)

Be2C Phase %

before / after

BeO Phase %

before / after

Graphite Phase %

before / after

A1 1 day 0.5587 0.5562 0.45% Analysis on-going

A2 1 week 0.4687 0.4666 0.45% Analysis on-going

A3 2 weeks 0.3667 0.3629 1.04% Analysis on-going

1 1 day 0.5596 0.5559 0.66 90.2 / 87.2 7.0 / 7.3 2.1 / 5.5

2 1 week 0.6283 0.6234 0.78 89.9 / 82.6 6.9 / 6.9 3.2 / 10.4

3 2 weeks 0.5960 0.5939 0.35 89.6 / 84.4 7.1 / 7.6 3.3 / 8.0

A4 1 day 0.3939 0.3920 0.48% Analysis on-going

A5 1 week 0.5135 0.5068 1.30% Analysis on-going

A7 2 weeks 0.5288 0.5238 0.95% Analysis on-going



5/1/2025 13

In-situ Chemical Compatibility Testing

• Be2C degrades to methane in the 
presence of hydrogen
• Can this be used for 3H mitigation?

• Plan to test small coupons in Nezsch 
skimmer under different Ar and Ar+H 
conditions
• Equipment having issues with 

communications between Netzsch TGA 
and 3rd party mass spectrometer

Specimen
Mass 

(g)

Exposure 

Temperature (°C)

Exposure Gas 

Composition

S1 0.0076 650 Ar

S2 0.0094 600 Ar + 1% H

S3 0.0409 600 Ar + 4% H



Modeling Beryllium 
Carbide
Yuri Osetskiy

Eva Zarkadula

Mao-Hua Du

German Samolyuk
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Paper submitted to journal and under review



15

First principles modeling in Be2C

• DFT modeling in VASP

• Supercells of three sizes were used to 
investigate different effects: 3x3x3 (324 
sites), 4x4x4 (768 sites) and 5x5x5 (1500 
sites).

• Advanced computing facilities: National 
Energy Research Scientific Computing 
Center (NERSC) at LBNL and Compute and 
Data Environment for Science (CADES) at 
ORNL. 

Atomic structure of anti-fluorite Be2C 
structure: Be – green, C – brown
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Band structure

• Be2C is weak semiconductor with 
relatively narrow band gap: 

 Eg = 1.212 eV 

• Estimated Fermi energy: 

 EFermi = 6.271 eV

• Density of states in the perfect Be2C 
crystal. EF is Fermi energy estimated 
from the valence band maximum – 
EVBM.
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Density of states and point 
defects
• Be2C is weak semiconductor with relatively narrow band 

gap: 
 Eg = 1.212 eV 
• Estimated Fermi energy: 
 EFermi = 6.271 eV 
• Defects change electronic structure by shifting energy 

and introducing new electronic states. 
• Projected density of states in Be2C crystals top to 

bottom: perfect, and containing neutral Be-vacancy, C-
vacancy, Be-interstitial and C-interstitial



Point defects properties
interstitial structures
• Anti-fluorite Be2C structure assumes many possible configurations of interstitial atoms

• For estimating the ground state configuration, we applied DFT molecular dynamics 
modeling – annealing over 4 ps at 1200K followed by relaxation to 0K
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Ground state configurations:

Octahedral Be-interstitial between 
the Be (001) planes. 

Symmetric split C-C dumbbell along 
[100] direction;



Point defects properties – energy formation

• Formation energy of point defects 
strongly depends on their charge 
state;

• Defects presented in the plot :
Ic – C-interstitial atom
IBe – Be-interstitial atom
VC – vacancy in C-site  
VBe – vacancy in B-site  
AntBe_in_C – Be atom in C site  
AntC_in_Be – C atom in Be site  
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Point defects properties – model size effect

Vacancy and interstitial atom 
formation energies in the 
smallest, i.e. 3x3x3, (solid lines) 
and largest, i.e. 5x5x5, (dashed 
lines) supercells.  
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Point defects properties – Frenkel pairs
• Be and C FP modelled in the large 

supercell 5x5x5 (1500 sites)
• Vacancy and interstitial atoms 

were separated by different 
distance along close to <111> 
direction. 
• Pair in the first coordination spheres 

were unstable. 

• Binding energy was calculated 
relatively the neutral point 
defects:
• Reasonable for C-FP when energy 

drops to ~0.5 eV (instead of 0 eV)
• Unlikely for Be-FP where energy 

saturates at ~2.5 eV



Ion Irradiation of Be2C
Diego Múzquiz

Stephen Raiman
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Primary Containment for Irradiations

• Irradiation parameters 
minimize sputter yield to an 
acceptable limit

• Gold Layer further reduces 
sample sputtering

• 3 different coating were tested 
on SiC to support simulated 
results
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Secondary Containment Failsafe

• Sample inside custom molybdenum box 
attaches to stage

• Molybdenum has high heat transfer while not 
melting at experimental temperatures
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Irradiation Experimental 
Setup



26

Containment Monitoring and Swab Testing Post 
Irradiation
• The RGA monitors the inside of 

the chamber
• Post irradiation, cleaning with a 

HEPA rated vacuum
• Swab tests are done post 

cleaning to ensure no beryllium 
remains
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Ion Irradiation Conditions
Parameters Experiment 1 Experiment 2

Dose 2 30

Damage Rate [dpa/s] 1.21 x 10-4 1.51 x 10-4

Temperature [C] 499.9 ± 8.8 504 ± 7.9

Current [µA] 0.211 0.472

Energy [MeV] 9.00 9.00

Time [h] 10.55 55.11

Beam Area [cm2] 0.09 0.126

Incident Ion C3+ C3+
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Scanning Electron Microscopy

• Inclusions and non-
uniform microstructure 
expected from XRD 
results

• 2 dpa specimens not 
stored in Ar glove box 
for 5 months prior to 
SEM – some 
environmental effects

• Same issues not 
observed in 30 dpa 
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Transmission Electron Microscopy

• Small (<100 nm) inclusions in unirradiated Be2C
• STEM EELS shows inclusions are BeO

• Features in 30 dpa specimen easy to see
• No observed loss of crystallinity at 30 dpa

30 dpa
530°C



Upcoming Work
A. Willoughby

E. Cakmak

K. Johnson

B. Henry

E. Paxton

S. Fiscor
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Suggested future modeling activity

Understanding mechanisms of radiation damage and microstructure evolution 
assumes the following modeling activity:
• Predicting diffusion:

✓ vacancy – vacancy jump barriers and kinetic Monte Carlo modeling vacancy diffusion;   
✓ interstitial atoms – because of the complexity of diffusion mechanisms, direct molecular dynamics 

modeling should be applied; 

• Defect-defect interactions:
✓ dilatation properties of vacancy and interstitial defects needed for long-range interaction in strain 

fields;   
✓ extended defects nucleation and growth mechanisms and energy and structure properties;
✓ charge effects in defect-defect interactions;

• Development of kinetic Monte Carlo model for the overall dynamics of 
microstructure evolution. 
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Additional Ion Irradiation Studies

• Expand dose and temperature range 
• Use ion implantation to study H and He diffusion characteristics
• In-Situ dual-beam irradiation (C+ with simultaneous H implant)
• Static and flowing FLiBe exposures
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Beyond FY25?

• From these preliminary results evaluate if a neutron irradiation 
campaign is viable. 

• Work with Materion to develop advanced processing methods to tailor 
material properties

• Any future work will require setup of capabilities for handling and 
testing solid Be2C both pre- and post-irradiation
• Glove boxes, testing equipment (mass/dimensions, elastic properties, strength, 

CTE, thermal diffusivity, etc.)
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