

Preliminary R&D of Beryllium Carbide as a Future MSR Moderator

Anne Campbell, Ercan Cakmak, Adam Willoughby, Yuri Osetskiy (ORNL) Stephen Raiman, Diego Muzquiz (University of Michigan), David Holcomb (INL)

erator NL) omb (INL)

Office of Nuclear Energy

es

Acknowledgements

- D. Sulejmanovic, Y. Osetskiy, E. Zarkadoula, K. Johnson, B. Henry, E. Paxton, S. Fiscor, J. McFarlane, K. Robb – ORNL
- This work is sponsored by the U.S. Department of Energy Molten Salt **Reactor program**
- Oak Ridge National Laboratory is managed by UT-Battelle, LLC, under contract No. DE-AC05-000R22725 for the U.S. Department of Energy.

Grand Question

Can beryllium carbide be used in future reactors as a replacement moderator for graphite?

Long-term (10+ years) to answer this question, but can perform preliminary screening

Office of Nuclear Energy

Why Beryllium Carbide?

- High moderating efficiency and low absorption cross section
- Be slowing down power ~2.5x > than carbon ullet
- Chemically compatible with coolant salts •
- Antifluorite crystal structure the same crystalline • configuration (with anions and cations reversed) as exceptionally radiation damage resistant fluorite type crystals (e.g., UO_2)
 - The anti-fluorite crystal (Li₂O) has also been shown to have high radiation damage tolerance [1,2]

[1] Moriyama et al., Journal of Nuclear Materials, **258-263**, (1998) 587-594. [2] Noda, et al., Journal of Nuclear Materials, 123, (1984) 908-912

vol. 3, pp. 398–436

Campbell & Burchell Timothy D. (2020). Radiation Effects in Graphite. Comprehensive Nuclear Materials 2nd edition,

Technical Challenges with Beryllium Carbide

- Long history of graphite as neutron moderators (CP-1, X-10 ~80 years) research and knowledge – only limited low dose studies in Be₂C [1-3]
- Be₂C is brittle, vulnerable to thermal stress cracking
 - Can we mitigate brittle nature via fiber reinforcement?
- Be₂C is toxic, moisture sensitive, chemically reacts with U
 - Would need a protective layer (NbC)
- Be₂C is a methanide (when exposed to H it decomposes into methane)
 - Can this be utilized for tritium management strategy?
 - Methane is easily trapped and doesn't diffuse through metal alloys
- Be does have gas generating reactions with neutrons (He and ³H)
 - May be beneficial for fusion systems for ³H production

[1] Maya et al., GA-A-17842; (1985)
[2] Marion & Muenzer, SAND--78-0227C, CONF-780622, (1978)
[3] Feldman & Silverman, NAA-SR-114, (1951)

What are the first steps?

- Need solid Be₂C samples concern is production and processing is export controlled technology
- Understand high temperature stability of Be₂C
- Preliminary understanding of irradiation effects in Be₂C
- Degradation behavior when exposed to hydrogen
- Understand thermal properties

High Temperature Stability Testing

- D. Sulejmanovic
- A. Willoughby
- E. Cakmak
- B. Henry
- S. Fiscor

Phase Composition Measurement

- Make Kapton packets, load Be₂C into packet and seal shut with 2 pieces of Kapton tape
- Panalytical X'pert diffractometer (CuKα)
 - θ-2θ setup 20 100° 2θ, with a scan rate of 0.0167 deg/s (~30 minute scan time), 1/4° fixed slits, 1/2° anti-scatter slit, 0.04 soller slits coupled with a 10 mm mask, and zero-background plate was positioned below the specimens to remove any peaks from the metal specimen stage
 - Phase identification used a search match with the Jade software and the ICDD database

Nolten Salt React

of ENERGY

Static Capsule Testing

- Mass specimens
- Specimens loaded into 316L stainless steel doublecontainment capsules
- Fill with desired environment (Ar gas)
- Electron beam welded shut
- Put into box furnace at desired temperature for predetermined time

Inner and outer capsules (courtesy J. Keiser)

Volten Salt React P R O G R A

Before exposure

After exposure

Post-Exposure Analysis

- Open capsules
- Remeasure specimen mass (mass loss)
- Package in new Kapton packets
- XRD (determine phase composition)

Summary of Changes 650°C Exposures

Specimen #	Exposure Time	Pre-exposure mass (g)	Post-exposure mass (g)	Mass loss (%)	Be ₂ C Phase % before / after	BeO Phase % before / after	Graphite Phase % before / after
1	1 day	0.5596	0.5559	0.66	90.2 / 87.2	7.0 / 7.3	2.1 / 5.5
2	1 week	0.6283	0.6234	0.78	89.9 / 82.6	6.9 / 6.9	3.2 / 10.4
3	2 weeks	0.5960	0.5939	0.35	89.6 / 84.4	7.1 / 7.6	3.3 / 8.0

Before exposure

After exposure

Specimens have dull grey finish before exposure. After exposure, all specimens have dark surface (graphite buildup as Be converts to BeO and sloughs off?)

Additional Temperature Exposures

	1.5 т					
		Mass loss (%)	Post- exposure mass (g)	Pre-exposure mass (g)	Exposure Time	Specimen #
		0.45%	0.5562	0.5587	1 day	A1
	3 ^{1.0}	0.45%	0.4666	0.4687	1 week	A2
	0000 (°	1.04%	0.3629	0.3667	2 weeks	A3
	ass L	0.66	0.5559	0.5596	1 day	1
	₹ 0.5	0.78	0.6234	0.6283	1 week	2
	-	0.35	0.5939	0.5960	2 weeks	3
1		0.48%	0.3920	0.3939	1 day	A4
	-	1.30%	0.5068	0.5135	1 week	A5
$\begin{array}{c c} 1 \\ 0 \\ 0 \\ 100 \end{array}$	4 0.0 0	0.95%	0.5238	0.5288	2 weeks	A7
Т	Ū					

In-situ Chemical Compatibility Testing

- Be₂C degrades to methane in the presence of hydrogen
 - Can this be used for ³H mitigation?
- Plan to test small coupons in Nezsch skimmer under different Ar and Ar+H conditions
 - Equipment having issues with communications between Netzsch TGA and 3rd party mass spectrometer

opeennen	(g)	Tempe
S1	0.0076	
S2	0.0094	
S3	0.0409	

Mass

Snecimen

Exposure perature (°C) 650 600 600

Exposure Gas Composition Ar

Ar + 1% HAr + 4% H

Modeling Beryllium Carbide

Yuri Osetskiy

Eva Zarkadula

Mao-Hua Du

German Samolyuk

Paper submitted to journal and under review

Office of NUCLEAR ENERGY

First principles modeling in Be₂C

- DFT modeling in VASP
- Supercells of three sizes were used to investigate different effects: 3x3x3 (324 sites), 4x4x4 (768 sites) and 5x5x5 (1500 sites).
- Advanced computing facilities: National **Energy Research Scientific Computing** Center (NERSC) at LBNL and Compute and Data Environment for Science (CADES) at ORNL.

Atomic structure of anti-fluorite Be₂C structure: Be – green, C – brown

15

Band structure

 Be₂C is weak semiconductor with relatively narrow band gap:

 $E_g = 1.212 \text{ eV}$

• Estimated Fermi energy:

 E_{Fermi} = 6.271 eV

Density of states in the perfect Be₂C crystal. EF is Fermi energy estimated from the valence band maximum – EVBM.

16

Density of states and point defects

Be₂C is weak semiconductor with relatively narrow band gap:

 $E_{g} = 1.212 \text{ eV}$

• Estimated Fermi energy:

 $E_{Fermi} = 6.271 \text{ eV}$

- Defects change electronic structure by shifting energy and introducing new electronic states.
- Projected density of states in Be₂C crystals top to bottom: perfect, and containing neutral Be-vacancy, C-vacancy, Be-interstitial and C-interstitial

Point defects properties interstitial structures

- Anti-fluorite Be₂C structure assumes many possible configurations of interstitial atoms
- For estimating the ground state configuration, we applied DFT molecular dynamics modeling – annealing over 4 ps at 1200K followed by relaxation to 0K

Symmetric split C-C dumbbell along [100] direction;

Ground state configurations:

Octahedral Be-interstitial between the Be (001) planes.

ffice of Nuclear Energy

Point defects properties – energy formation

- Formation energy of point defects strongly depends on their charge state;
- **Defects** presented in the plot : •
 - I_c C-interstitial atom I_{Be} – Be-interstitial atom $V_{\rm C}$ – vacancy in C-site V_{Be} – vacancy in B-site Ant_{Be in C} – Be atom in C site Ant_{C_in_Be} – C atom in Be site

19

Point defects properties – model size effect

Vacancy and interstitial atom formation energies in the smallest, i.e. 3x3x3, (solid lines) and largest, i.e. 5x5x5, (dashed lines) supercells.

Point defects properties – Frenkel pairs

- Be and C FP modelled in the large supercell 5x5x5 (1500 sites)
- Vacancy and interstitial atoms were separated by different distance along close to <111> direction.
 - Pair in the first coordination spheres were unstable.
- Binding energy was calculated relatively the neutral point defects:
 - Reasonable for C-FP when energy drops to ~0.5 eV (instead of 0 eV)
 - Unlikely for Be-FP where energy saturates at ~2.5 eV

Molten Salt Reactor

Ion Irradiation of Be₂C

Diego Múzquiz

Stephen Raiman

Primary Containment for Irradiations

- Irradiation parameters minimize sputter yield to an acceptable limit
- Gold Layer further reduces sample sputtering
- 3 different coating were tested on SiC to support simulated results

Nolten Salt Reactor

Secondary Containment Failsafe

- Sample inside custom molybdenum box attaches to stage
- Molybdenum has high heat transfer while not melting at experimental temperatures

Office of Nuclear Energy

Irradiation Experimental

High Energy C+++ Ions (BL2)

Office of Nuclear Energy

Containment Monitoring and Swab Testing Post Irradiation

- The RGA monitors the inside of the chamber
- Post irradiation, cleaning with a **HEPA** rated vacuum
- Swab tests are done post cleaning to ensure no beryllium remains

Ion Irradiation Conditions

Parameters	Experiment 1	Experiment 2	
Dose	2	30	
Damage Rate [dpa/s]	1.21 x 10 ⁻⁴	1.51 x 10 ⁻⁴	
Temperature [C]	499.9 ± 8.8	504 ± 7.9	
Current [µA]	0.211	0.472	
Energy [MeV]	9.00	9.00	
Time [h]	10.55	55.11	
Beam Area [cm ²]	0.09	0.126	
Incident Ion	C^{3+}	C^{3+}	

Scanning Electron Microscopy

- Inclusions and nonuniform microstructure expected from XRD results
- 2 dpa specimens not stored in Ar glove box for 5 months prior to SEM – some environmental effects
- Same issues not observed in 30 dpa

Transmission Electron Microscopy

- Small (<100 nm) inclusions in unirradiated Be₂C
 - STEM EELS shows inclusions are BeO
- Features in 30 dpa specimen easy to see
 - No observed loss of crystallinity at 30 dpa

Upcoming Work

- A. Willoughby
- E. Cakmak
- K. Johnson
- B. Henry
- E. Paxton
- S. Fiscor

Suggested future modeling activity

Understanding mechanisms of radiation damage and microstructure evolution assumes the following modeling activity:

- Predicting diffusion:
 - vacancy vacancy jump barriers and kinetic Monte Carlo modeling vacancy diffusion;
 - ✓ interstitial atoms because of the complexity of diffusion mechanisms, direct molecular dynamics modeling should be applied;
- Defect-defect interactions:
 - dilatation properties of vacancy and interstitial defects needed for long-range interaction in strain fields;
 - extended defects nucleation and growth mechanisms and energy and structure properties;
 - \checkmark charge effects in defect-defect interactions;
- Development of kinetic Monte Carlo model for the overall dynamics of microstructure evolution.

Additional Ion Irradiation Studies

- Expand dose and temperature range
- Use ion implantation to study H and He diffusion characteristics
- In-Situ dual-beam irradiation (C⁺ with simultaneous H implant)
- Static and flowing FLiBe exposures

teristics plant)

Beyond FY25?

- From these preliminary results evaluate if a neutron irradiation campaign is viable.
- Work with Materion to develop advanced processing methods to tailor material properties
- Any future work will require setup of capabilities for handling and testing solid Be₂C both pre- and post-irradiation
 - Glove boxes, testing equipment (mass/dimensions, elastic properties, strength, CTE, thermal diffusivity, etc.)

Questions?

Anne Campbell campbellaa@ornl.gov

