

MOSARD: Molten Salt Reactors Reliability Database

Askin Guler Yigitoglu, PhD Andy Worrall

Molten Salt Reactor Campaign Annual Review April 23, 2024

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY

Why do we need component failure rate data?

Failure rate data is needed to quantify a probabilistic risk assessment (PRA), under the risk-informed performance-based licensing by the US Nuclear Regulatory Commission.

Another important use of component failure rate data is to support Reliability, Availability, Maintainability (RAM) analyses

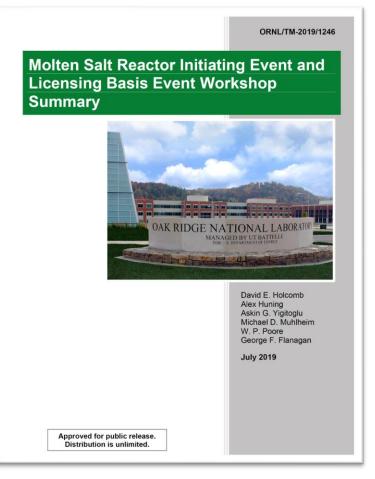
- to demonstrate the MSR test loops/ facilities availability

A third use is to support facility operations, including spare parts planning & maintenance intervals.

For lessons learned from 1960s and exchanging lessons NOW

Building capability to examine the failure modes of salt components that led to **multiple and repeated** component failures during the MSRE operations:

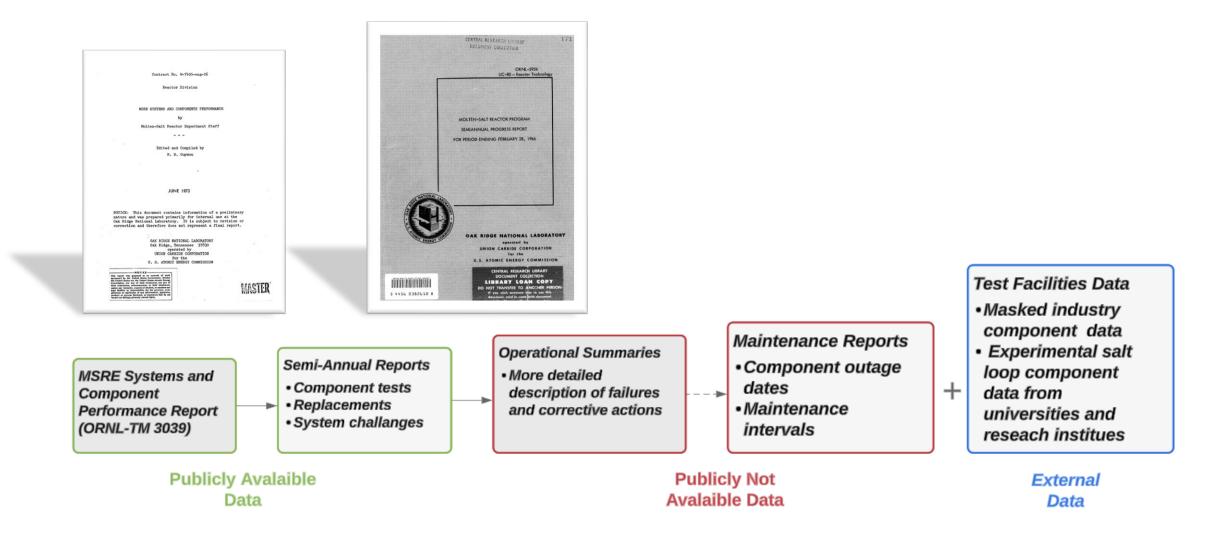
to improve reliability performance, the next generation of salt components, possibly reduce transients in the operations.



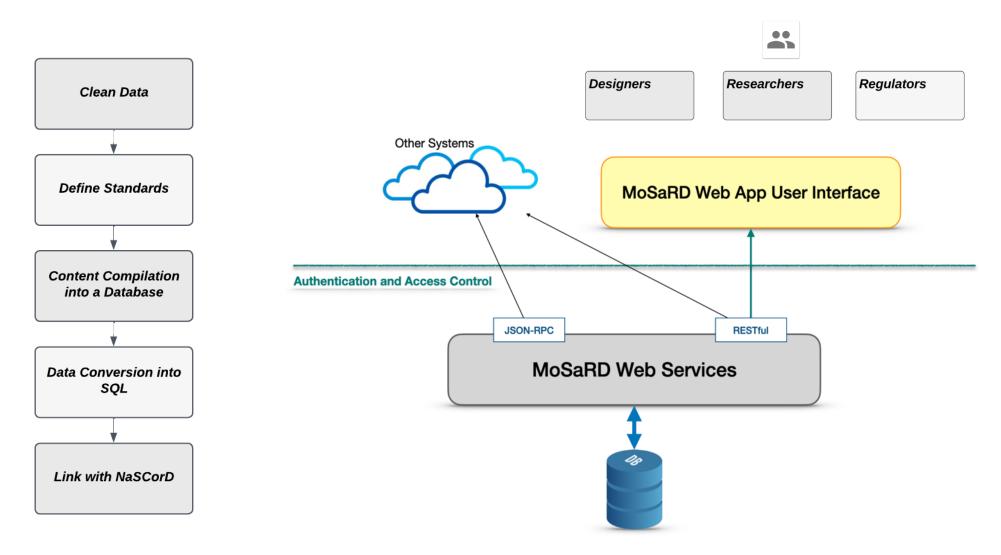
The MSRE Vessel

The MSRE Control Room Picture

Molten Salt Reactor Reliability Data Needs for PRA



E ID	IE for radioactive releases			
001	 Spectrum of fuel salt boundary breach sizes and locations: Breaches with gas release only Breaches with gas and fuel salt release 			
002	Actuation of dump system with or without pre-existing leak in dump tank coolant boundary			
003	Fuel salt freezing in heat exchanger (primary side plugged)			
004	Plugging on secondary side of heat exchanger			
005	Salt contamination/impurities			
006	Spectrum of unanticipated foreign material buildup in the core			
007	Improper fuel salt composition during loading to reactor system			
008	Fuel pump over-speed / under-speed			
009	Vapor lock of heat exchanger			
010	Fuel salt freezing in primary fuel salt system			
011	Undercooling/overcooling of heat exchanger			
012	Inadvertent fuel pump trip			
013	Fuel salt pump shaft shear/seizure			
014	Fuel salt pump seal failure			
015	Fuel salt pump shaft vibration due to its length			
016	Inadvertent freeze valve opening			
017	Change in core/primary fuel salt system void fraction too high or too low			
018	Fuel salt pump cavitation			
019	Excessive graphite radiation damage			
020	Change in fuel salt volume in the primary fuel salt system			
021 022	Core flow blockage			
	Change in core geometry			

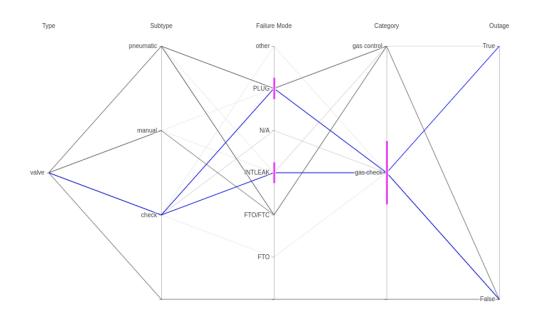


Database Input: Where to find and collect relevant data?

Data Process: How do we extract and preserve the data?

MOSARD Architecture

Initial Effort


- Building understanding on causes of failures that lead to premature replacement of **control and check valves** of off-gas, cover gas system.
- The incidents are systematically analyzed, translated and grouped according
 - type of component
 - type of failure
 - operational fluid
 - contributing factors
- Initial findings indicated that in MSRE valve issues related with plugging solved mostly with better filter designs and bigger size valve replacements. Trade-off study related with number, size, location (relative to the charcoal beds) and cost informs more reliable operations of the off-gas system.

Database GUI

Log in Django site admin 🛛 MoSaRD 💦 👌 Source map errors — Fire 🎽 127.0.0.1:8000/mosard/even X 🕸 Settings X + — 🗖 🌔						
\leftarrow \rightarrow C O 127.0.0.1:8000/mosard/event/plot		≣ ☆ 🛛 🕾				
credo_i credo_ii ornl	valve	gas check gas control				
Component Subtype:	Failure Mode:	Outage Flag:				
check manual pneumatic	FTO FTO/FTC INTLEAK N/A	False True				
Component Number:	Start Date:	End Date:				
0000-00-00 CV-528 CV-533 CV-560	mm / dd / yyyy	mm / dd / yyyy				
Apply Reset						

Search data...

Туре	Failure Mode	Count
valve		491
valve	FTO	1
valve	FTO/FTC	14
valve	INTLEAK	6
valve	N/A	2
valve	PLUG	14
valve	other	1

Component Details 🗸 Search

Database Capabilities

- Options for the user to:
 - Search and select the failure data for a component
 - Estimate generic MSR design probability of failure on demand and failure rate, and the out-of- service unavailability
 - Prepare output reports of probability distributions and trends
 - Calculate initiating event frequencies
- PostgreSQL and a server for hosting it: VM (re7linux.ornl.gov).
- The prototype database structure and Web services interface for the MOSARD is finalizing migration to a new server.

Conclusion

- Supporting MSR system designers during Risk-Informed Performance-Based licensing
 - anticipated design justifications (component redundancy, sizes, etc.) the regulator may require.
- The operational experience database is needed post-statistic analysis, failure frequency estimates, trends, lessons learnt, and input for the probabilistic risk assessment (PRA) analysis.
- These failure data are valuable for- Reliability, availability and maintainability analyses and operations support.
- Focused data mining approach: What do designers need?

Acknowledgements

- A number of collaborators have contributed to the work presented here, include staff from ORNL (George Flanagan, Josh Oakgrove), Vanderbilt University (Megan E. Harkema, Steven L. Krahn, Brandon Chisholm*), and EPRI (Andrew Sowder, Eric Thornsbury).
- The research presented here is funded by the U.S. Department of Energy (DOE) Gateway for Accelerated Innovation in Nuclear (GAIN) program.
- Oak Ridge National Laboratory is operated by UT-Battelle for the US Department of Energy.

Thank you!

yigitoglua@ornl.gov

ORNL IS MANAGED BY UT-BATTELLE LLC FOR THE US DEPARTMENT OF ENERGY