

Initial Investigations of an Irradiated Chloride Fuel Salt: NaCl-UCl₃

Initial results, future work, and next irradiation

Presented by Toni Karlsson on behalf of the Irradiation Team

MSR Campaign Review – April 2025 INL/MIS-25-84399

Office of Nuclear Energy

Outline

- Am/Pu Salt Synthesis
- MRTI Irradiation experiment
 - Overview •
 - Irradiation
 - PIE
- **ATR Irradiation** ullet
 - Overview
 - **Preliminary Design** •
 - Accomplishments •
- Am/Pu Synthesis
- Milestones •

5/1/2025

MRTI = Molten-salt Reactor Temperature-controlled Irradiation PIE = Post Irradiation Examination ATR = Advanced Test Reactor

MRTI - Overview

- Salt: ~41g of 33UCl₃-67NaCl (93% ²³⁵U)
- Capsule material: Inconel-625
- Other structural material: SS-316
- Plenum gas: Ar ullet
- Outer can gas: 15He/85Ar •
- Predicted fuel performance under irradiation
 - Fission Heat = 20 W/cm³ •
 - Neutron Flux = $3.5 \times 10^{12} \text{ n/cm}^2$ -s •
 - Gamma Flux = $1.4 \times 10^{13} \gamma$ /cm²-s
 - Salt Temperature = 525-900°C

Molten Salt Reactor

SS = Stainless Steel

MRTI - Overview

- Neutron RADiography (NRAD) Reactor
- 250 kW TRIGA-fuel MTR-grid pool reactor
 - Typically used for neutron radiography PIE
 - Pool reactor (no pressure)
 - Only TRIGA that handles HEU
 - No experiment traffic/schedule, irradiate by request
- Immediate access to HFEF for quicker turnaround PIE

NRAD = Neutron RADiography TRIGA = Training, Research, Isotope, General Atomics MTR = Materials Test Reactor HEU = Highly Enriched Uranium HFEF = Hot Fuel Examination Facility

5/1/2025

Office of Nuclear Energy

MRTI - Irradiation

- Irradiation started on August 21st 2023
- Final irradiation on June 3rd 2024 ۲
 - 390 hr of irradiation
 - 0.20 GWd/MTU burnup
- Transferred into HFEF main cell on June 25th 2024
- Disassembled in July 2024

Office of Nuclear Energy

GWd = Gigawatt days MTU = Metric Ton of Uranium

5/1/2025

MRTI – PIE

- Remotely disassembled in Ar hot cell
- Die grinder used to remove capsule from outer can
- Capsule was breached during the process, unable to collect off-gas sample
- Immersion heater "stuck" in place

Molten Salt Reactor P R O G R A M

MRTI - PIE

- Neutron radiograph imaging
 - 5 angles: 0, 45, 90, 120, 240
 - Thermal and epithermal imaging
 - Epithermal neutrons have higher energy, can penetrate further into the sample than thermal neutrons
 - Solidification modeling using CFD

MRTI - PIE

- PGS the length of the capsule
 - Useful energy range ~150eV 1600keV
 - Background, quick, detailed scans • (4 angles)
- Expected FP (ORIGEN 2 software): ullet
 - Nb⁹⁵, Zr⁹⁵, Y⁹¹, Ce¹⁴¹, Sr⁸⁹, Ru¹⁰³ Pr¹⁴⁴, Ce¹⁴⁴, Pr¹⁴³, La¹⁴⁰, Ba¹⁴⁰, S³⁵, Nd¹⁴⁷, Ru¹⁰⁶, and Rh¹⁰⁶

õ

- Activated material of construction
 - Cr⁵¹, Co⁶⁰, etc. (low counts)

Molten Salt Reactor 0 G

PGS = Precision Gamma Scan keV = kilo- electron volts FP = Fission Product

5/1/2025

Office of Nuclear Energy

9

MRTI - PIE

- MRTI sectioning
 - Low speed saw
 - Analysis of Segment E
 - SEM (material of construction)
 - Elemental/isotopic (salt)
 - Salt melted out of segment
 - All other segments/salt are stored in individual capsule in HFEF
 - Two slices extracted from Segment E ۰.
 - Radial mounted in epoxy
 - Planar mounted on SEM 'sticky dot'

MRTI - PIE (preliminary data)

- Radial sample shows several features
 - Corrosion deposit layer
 - Fe rich layer
 - Cr rich layer
 - Bulk Inconel-625
- Planar sample shows
 - One spot showed corrosion of Inconel-625
 - Observed deposits on surface
- Elemental mapping ongoing

20um

50µm

 $10 \mu m$

ATR - Overview

- Purpose
 - Gain understanding of fuel salt chemistry having a minimum of 2 GWd/MTU burnup to provide insights on fuel performance, pre- and postirradiation
 - Design a standardized salt irradiation • capsule (no lead outs)
 - Out-of-pile off gas analysis
 - Effect of chemical/thermal properties •
 - Partitioning of FPs •
 - Out-of-pile corrosion test for comparison • (proposed)
 - Need to work with modeling community to • determine "high-value" data for validation

Molten Salt Reactor O G R

ATR – Conceptual Design (preliminary)

- Targeting Medium I position (I-3)
 - Neutron variance during cycle (drum rotation)
 - Neutron flux
 - Size
- 4 capsule configuration, double stacked
- 316H in contact with salt
- Passive sensors
 - Melt wires
 - Fluence monitors
 - 600 900°C

ATR Irradiation Team

Matt Arrowood Experimental Manger

Calvin Downey Lead Design Engineer

Daniel Chapman Thermal Analysis

Frederick "Rick" Gleicher Neutronic Analysis

Daniel Sluder ATR Experiment Engineer

5/1/2025

Ryan Sandbek Structural Analyst

Bryon Mowlds Quality Assurance

Toni Karlsson **Technical Lead**

Steven Warmann PIE Experiment Manager Molten Salt Reactor P ROGRAM

Many other team members and we will continue to grow!

ATR - Irradiation

- Assembly, irradiation, and PIE approved through the IWA process (INL specific) \bullet
- Assembled the design and analysis team
- Drafted the F&OR for MSR-C1 •
- Held Experiment Design Kickoff Meeting •
- Developed conceptual capsule design with passive flux and thermal wires
- Developed conceptual design for irradiation vehicle/basket
- Identified the preferred ATR irradiation position (I-3)
- Neutronic models being developed to inform on enrichment, thermal design, and geometry
- Thermal models being developed
 - Thank you, Tony Birri and Julian Schorne-Pinto! lacksquare

15

Am/Pu Salt Synthesis

- Material has been identified and inspected
- Pu/Am alloy contains approximately 20wt% Am •
 - Old sample, need to verify starting material composition and isotopic
 - Perform hydride/dihydride reaction, NH₄Cl to chlorinate ۲
 - Can be mixed with desired salts UCl₃/UCl₄, NaCl, MgCl₂, etc.
 - Will be characterized to determine elemental/isotopic analysis, density, and MP
- Delays in synthesis due to H/dH furnace being broken
 - Attempts to repair have been delayed due to facility • / upgrades to support MCRE
 - Facility agreed to prioritize furnace restart activities in • April

H/dH = hydride/dihydride MCRE = Molten Chloride Reactor Experiment MP = Melting Point

5/1/2025

Molten Salt Reactor

Milestones

Thermal Properties (AT-25IN070502 - Thermophysical Property of Actinides- INL)

Milestone Number	Milestone Title	Due Date	Status
M2AT-25IN0705021	Complete Synthesis of Plutonium/Americium (Pu/Am) Metal to Chloride and Initiate Characterization of the Salt	2/27/2025	Missed 07/30/2025
M3AT-25IN0705022	Complete Initial Thermal Property Measurements of PuCl3-AmCl3-NaCl Salt	9/25/2025	On track
M4AT-25IN0707021	Complete Thermophysical Property Measurements of CEA Provided Salt at INL	08/15/2025	Missed?

Salt Irradiation and PIE (AT-24IN070508 - Irradiation of Salt – INL)

Milestone Number	Milestone Title	Due Date	Status
M2AT-25IN0705081	Complete initial PIE of Irradiated Salt	10/01/2024	Complete
M3AT-25IN0705082	Initiate corrosion analysis of capsule	06/05/2025	On track
M3AT-25IN0705083	Complete preliminary design of new capsule	08/25/2025	On track

Office of Nuclear Energy

17

Acknowledgements

So many people to thank!

- Abdalla Abou Jaoude •
- Stephen Warmann •
- Evan Lovel
- Mike Ruddell and entire NRAD crew
- **Steven Papas** ٠
- Calvin Downey •
- William Philips •
- Hot cell operators
- Tammy Trowbridge •
- Austin Poole ۲
- **David Zirker** •
- Irradiation Team
- Support
 - INL LDRD office •
 - Molten Salt Reactor Campaign •

Manuscript in process: Irradiation of an Enriched Uranium (NaCl-UCl₃) Fuel Salt Capsule, Summary of Nondestructive Post Irradiation Examinations, and Solidification Modeling Toni Karlsson^{1*}, Abdalla Abou-Jaoude¹, Ramiro Oscar Freile^{1*}, Morgan Kropp¹, Steve Warmann¹, Evan Lovel¹, Brian Kajganich¹, Marc Babcock¹, Katie Hawkins¹, Calvin Downey¹, Mauricio Tano Retamales¹, William Phillips¹, Glen Papaioannou¹, Chuting Tsai¹, Michael Ruddell¹, Reed Eichele¹, Steven Pappas¹, Charles Pierce Jones III¹, Richard M. Cox², and Patricia Paviet²

Thank you

Toni.Karlsson@inl.gov

