

Tritium Transport

Update on the Molten Salt Tritium Transport Experiment Thomas Fuerst

INL/MIS-25-84300

Office of Nuclear Energy

Outline

- Tritium Transport Background
 - Generation in MSRs
 - Transport in MSRs
- Molten Salt Tritium Transport Experiment (MSTTE)
 - Overview
 - Status Update

Tritium Generation in MSRs

Tritium generated by neutron reactions with Li, Be, and F.

⁶Li (7.5%) large thermal cross-section.

⁷Li (92.5%) moderate cross-section in fast-spectrum.

⁹Be and ¹⁹F in fast-spectrum.

reactors.

MSRs.

Andrews, Hunter B., et al. "Review of molten salt reactor off-gas management considerations." Nucl. Eng. Des. 385 (2021): 111529.

Tritium generation rates in *fluoride* salt reactors are similar to CANDU

CANDUs produce world's commercial supply of tritium.

Tritium is a valuable byproduct of

actor	Tritium Formation
уре	Rate 1000 MWe
	(Ci/day) [1]
ISR	2400*
NDU	2700
TGR	50
WR	2

*MSBR enriched in ⁷Li (99.992%).

Tritium Transport in MSRs

- 1. Production (neutrons + Li, Be, F)
- 2. Speciation (TF vs. T_2)
- 3. Graphite
- 4. Evolution into off-gas system
- 5. Diffusion through materials
- 6. Secondary system off-gas system
- 7. Onwards to detritiation/stack

Can we predict tritium transport in order to develop required control technology?

Molten Salt Tritium Transport Experiment

- MSTTE is a semi-integral tritium transport experiment for flowing fluoride salt systems.
- Location: Safety and Tritium Applied Research facility at Idaho National Laboratory
- Objectives:
 - (1) Safety code validation data.
 - (2) Test stand for tritium control technology.
- *Major Equipment*:
 - **Copenhagen Atomics Salt Loop**: salt tank, pump, flow meter, instrumentation and control
 - **External Test Section:** hydrogen injection, permeation, plenum, salt diagnostics, gas systems, controls, salt exchange tank, and versatile

Volten Salt Reactor

Copenhagen

Atomics

SaltLoop

6 ft

MSTTE Transport Phenomena

- Permeation through structural materials: permeation test section:
 - 316 SS 1 ½ in OD 0.120 in WT ASTM A269
 - 15,000 < **Re**_{FLiNaK} < 90,000
 - 7,000 < **Re**_{FLiBe} < 40,000
- Evolution to off-gas: *plenum* and *salt tank*
 - Argon Cover Gas
- Sparging in downward salt flow leg
 - 0.5 in OD Tube Port

Permeation and Analysis - Model

Permeation Analysis – Results

MELCOR-TMAP

Base Conditions: 600° C, 10¹⁶ D s⁻¹, 50 LPM

Molten Salt Reactor 0 G

FY25 Campaign Review Meeting

Salt Temperature

Status Update

Molten Salt Reactor ROGRAM P

FY25 Campaign Review Meeting

Office of Nuclear Energy

Copenhagen Atomics Loop

Molten Salt Reactor ROGRAM P

Office of Nuclear Energy

External Test Section

External Test Section Fabrication

All Components Received! Waiting on Welding.

Molten Salt Reactor 0 G R

FY25 Campaign Review Meeting

Summary

 Molten Salt Tritium Transport Experiment is versatile capability designed to provide tritium transport data and test control technology related to Molten Salt Reactors

- Sensors and Diagnostics
 Modeling and Simulation

Connect with me!

Contributions/Collaborations

Safety and Tritium Applied Research Facility

- *Joseph Redmond (MSU)
- *Tucker Warden (CSM)
- Chase Taylor
- Nikki France
- Masashi Shimada

Modeling and Simulation

- Ad Riet
- Matt Eklund
- Sam Walker

*Student Interns

- Shayne Loftus
- Bob Pawelko
- Taylor Hill
- Casey White
- Travis Neuman

- Travis Mui
- Rui Hu
- *Yifan Mao

- Megan Laing

Rowdie Shepherd Randel Paulsen

*Anthony Bowers Prof. Subash Sharma

14

Thank you

thomas.fuerst@inl.gov

