

Transforming Microreactor Economics Through Hydride Moderator Enabled Neutron Economy

Jason R. Trelewicz^{1,2}, Nicholas Brown³, Chase Taylor⁴

¹Materials Science & Chemical Engineering, Institute for Advanced Computational Science, Stony Brook University ²Materials Science and Technology Division, Oak Ridge National Laboratory ³Department of Nuclear Engineering, University of Tennessee Knoxville ⁴Fusion Safety Program, Idaho National Laboratory

www.stonybrook.edu/EMREL jason.trelewicz@stonybrook.edu

Aircraft Reactor Experiment-1954

Mixed Zirconium Hydride-Uranium TRIGA Fuel

Metal hydrides have hydrogen content approaching water, thus are very good moderators, but tend to decompose at elevated temperature and under irradiation

Background: thermodynamic limitations of ZrH_x

Ma et al. JAC 2015

2.0

1.8

1.6

1.4

1.2 1.0

0.8

0.6

0.4

0.2

0.0

500

atom ratio

HIZ

Stony Brook University

What about using different candidate hydrides?

Hu, et al., JNM 2020

Hydride

TiH₂

ZrH2

LiH

YH₂

ThH₂

H₂O

ThZr₂H₇

ThTi2H6

1

0.5 mm

10

Trofimov, et al., JNM 2020

Stony Brook University

Ceramic composites as engineered moderator/reflector materials

<u>Manufacturing</u>: ideally no chemical reactivity between the two phases with processing temperatures that do not decompose either phase and offer a pathway to economy of scale.

Project goals and objectives

Goals

 Demonstrate significantly reduced fuel costs through novel microreactor designs enabled by the technical advancement of engineered hydride ceramic composite moderators.

Objectives

- 1. Fabricate stabilized entrained hydride moderators for continuous operation at 800 °C through neutronics informed optimization
- 2. Enhance the performance of an annular, spherically-shaped, and reflected core through these moderators and integrated design optimization
- 3. Produce entrained hydride composites up to 10 cm in diameter via DCS and map the spatial distribution of microstructure and properties,
- 4. Measure H desorption from the entrained hydride composites with a migration model developed for hydrogen transport in MgO
- 5. Quantify the trade-off cost with savings realized through reduced uranium loading and other factors pertinent to microreactors.

Stony Brook University

Stabilizing Entrained Hydride Optimized Core Configurations Composites for Microreactors and Uranium Loading Lead – Jason Trelewicz (SBU) Lead – Nicholas Brown (UTK) Large Format Entrained Hydride Composites Refine core neutronics Lead - Trelewicz (SBU) Design models for iterations H evolution to limit H evolution H/D Redistribution Under Steady State and Gradient Temperatures Design Co-leads - Trelewicz (SBU), Taylor (INL) optimization for transforming economics **Cost Comparison of Entrained Hydride and** Standard Moderator/Reflector Lead –Brown (UTK)

Milestones

- 1. Report on the fabrication of stabilized entrained hydride ceramic composites with hydride loading optimized based on the annular spherical core models and stability up to 800°C
- 2. Report on fuel cycle performance of the spherical cores optimized to exploit the enhanced neutron economy enabled by the hydride-entrained composite moderators and reflectors.
- 3. Report on hydrogen transport in the entrained hydride composites coupled with a hydrogen migration model for MgO and its impact on fuel cycle performance under transients.
- 4. Technical Report on Large Format Production of Entrained Hydride Composites

Stony Brook

Initial cylindrical design (previously optimized)

- 55 fuel blocks per layer
- 48 layers of fuel blocks
- 2640 fuel blocks
- Volume = 1.01*107[cm3]

- No coolant channels in reflector to simplify conversion to sphere
- Calculate the sphere radius:

$$V_{c} = \pi r^{2} h \ R_{c} = 90[cm] \ H_{c} = 395.5[cm]$$

$$V_{s} = \frac{4}{3}\pi r^{3} \ R_{s} = ?$$

$$V_{s} = V_{c}$$

$$\frac{4}{3}\pi R_{s}^{3} = \pi R_{c}^{2} H_{c}$$

$$\frac{4}{3}R_{s}^{3} = R_{c}^{2} H_{c}$$

$$R_{s}^{3} = \frac{3}{4}R_{c}^{2} H_{c}$$

$$R_{s} = \sqrt[3]{\frac{3}{4}R_{c}^{2} H_{c}}$$

$$R_{s} = \sqrt[3]{\frac{3}{4}90^{2}(395.5)} = 133.936[cm]$$

• Fill with the same number of fuel blocks

Spherical design refinement holding core volume constant

- Lower probability of neutron leakage due to lower surface area to volume
- Reduced neutron leakage increases discharge burnup

$$K_{eff} = \eta \epsilon p f P_f P_t$$

 $\begin{aligned} \eta &= \text{reproduction factor} \\ \epsilon &= \text{fast fission factor} \\ p &= \text{resonance escape probability} \\ f &= \text{thermal utilization factor} \\ P_f &= \text{Fast Non-leakage Probability} \\ P_t &= \text{Thermal Non-leakage Probability} \end{aligned}$

Performance of the optimized spherical microreactor design

- Identical volumes with MgO-ZrH moderated moderators
- Sphere produces a <u>22% increase in</u> <u>burnup</u> from a geometry change
- Compared to a cylindrical graphite mHTGR refence the spherical design has a 135% increase in discharge burnup
- Spherical designs reduce fuel costs and mass of SNF by 57% compared to graphite reference

Composite moderator development

Enabling hydride composites through MgO sintering technology

 Lowering of onset temperature for sintering by ~500 °C (w.r.t pure MgO) in presence of LiF as a sintering aid
 ~99% densification achieved at 900 °C

Systematic variation in key processing parameters for MgO-ZrH_x

Parameters considered

- LiF content
- Sintering pressure
- Sintering temperature

➔ Use same ramp rates, and constant 10 min hold

Sintering temperature (°C)	LiF Content Wt.%	Sintering pressure (MPa)	Density (g/cm³)	Relative density (% of p _{th} = 3.98)
900	1.0	20	3.29	82.66
900	1.5	20	3.40	85.42
900	2.0	20	3.44	86.42
900	1.0	40	3.51	88.19
950	1.0	20	3.70	92.96

Optimized MgO-ZrH_x composites

Sintering temperature (°C)	Wt.% LIF (w.r.t. MgO)	Pressure (MPa)	Density (g/cm ³)	Relative Density (%)
900	1.0	20	3.29	82.66
900	1.5	40	3.76	94.47
950	1.5	40	3.93	98.74

300 µm

Key Assumptions and required inputs

- Material properties are uniform, isotropic, and time-independent (no microstructural effects)
- Kinetic factors are independent of the extent of transformation
- For first-order model, hydride nucleation and growth are ignored (dominated by dissolution)

Symbol	Parameter	Method																			
5			1				A53						1 —				A5	5a			
D_H	H Interdiffusion Coeff	Infrared Absorption	8.0 R						■ To ≋ Fir	otal effe rst orde	ct r effect	ces	0.8						∎ To ≋ Fi	otal effect rst order	t effect
TSS _D	Solubility Limit	Differential scanning Calorimetry	pui lodos 0.4	NI515								Sobol indi	0.6 0.4								
Q^*	Heat of Transport	Measurement of H profiles under ∇ <i>T</i>	0.2	Q*	D ₀	TSS _{P0}	TSS _{D0}	K _{N0}	K mob0	K _{th0}	K _{D0}		0	Q*	D ₀	TSS _{P0}	TSS _{D0}	K _{N0}	K mob0	K _{th0}	K _{D0}
K _D	Dissolution rate constant	Differential scanning calorimetry	1	(a) A54					1	(c) A56											
k _{mob}	Mobility-limited growth constant		8.0 si indices 9.0 si indices						∎ To ≋ Fir	tal effec st order	effect	l indices	0.8 0.6						∎ To ⊛ Fi	otal effect rst order	t effect
k_{th}	Reaction-limited growth constant		90.4 0.2									Sobo	0.4 0.2								
TSS_P	Supersolubility limit		0	Q*	D ₀	TSS_{P0}	TSS _{D0}	K_{N0}	K _{mob0}	K _{th0}	K _{D0}		0	Q*	D ₀	TSS _{P0}	TSS _{D0}	K _{N0}	K mob0	K _{th0}	K _{D0}
k_N	Nucleation kinetic parameter			(b)						(d)											
			ig. 11. So	bol indice	s of inp	ut param	eters con	nputed	from RM	SE for a	symmetrie	c cases:	(a) spe	cimen A	53. (b) specim	en A54.	(c) spec	imen A5	5a. (d) si	pecimen

Seo, S. B., Duchnowski, E. M., Motta, A. T., Kammenzind, B. F., & Brown, N. R. (2022). Sensitivity analysis for characterizing the impact of HNGD model on the prediction of hydrogen redistribution in Zircaloy cladding using BISON code. *Nuclear Engineering and Design*, *393*, 111813.

Stony Brook University

Project status and looking forward

Next Steps

- Synthesize samples for thermal desorption spectroscopy (TDS) and hydrogen permeation experiments. (SBU)
- Quantify microstructures and hydride phase fractions in optimized samples using X-ray tomography and diffraction. (SBU)
- Perform TDS and permeation experiments. (INL)
- Determine model parameters using the outlined methods (SBU)
- Investigate encapsulation methods to further expand relevant operating temperature windows. (SBU)
- Outline moderator hydride loading using the prismatic spherical design and create pebble-bed spherical reactor design. (UTK)

Products

- First publication accepted R. Altamimi, D. Doyle, J.R. Trelewicz, N.R. Brown, "Equilibrium Core Model for Micro Pebble-Bed Reactors Using OpenMC", Nuclear Science and Technology, 2025
- Publication on sintering mechanism finalized and to be submitted April 2025
- Publication on process optimization in preparation

Stony Brook

oiversity