
Instrumentation and 
Sensors - ORNL

March 5, 2025 

Chris Petrie | Group Leader, Oak Ridge National Laboratory

Contributions from:
Anant Raj, Brandon Schreiber, Pradeep Ramuhalli



Microreactor applications
• Smaller size
• Factory assembled
• Automated or autonomous 

operation to reduce O&M costs 
(no economies of scale)

• Components may be located 
closer to the core in a harsher 
environment with limited 
access
− Challenging to monitor or inspect, 

could benefit from advanced 
monitoring techniques

• Longer refueling cycles, less time 
for inspections/maintenance
− Manual inspections may not be 

an option
− Online monitoring could enable 

predictive maintenance
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FY24 recap: Distributed fiber optic 
acoustic sensors for localized damage 
detection in metals
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FY25: Focus on graphite in-core components
Microreactor 
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Finite element model solves inverse 
problem to identify damaged location 

based on measured impedances
• Informs automated control system or 

digital twin to evaluate impact on 
reactor

Current paths during measurements of 
impedances between electrode pairs
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Cracks in graphite 
components from the 
Hunterston B Power 

Station in the UK.

https://ichef.bbci.co.uk/news/1024/cpsprodpb/62E2/produ
ction/_105941352_hunterston1.jpg.webp

• Goal: Utilize electrical 
impedance tomography (EIT) 
to localize cracking or other 
damage in graphite 
microreactor components

‒ Leverages semiconducting 
properties: conductive, but not 
too conductive (we hope…)



Experimental challenge: Reliably measure small 
changes in impedance across many electrodes
• Multiplexer required to measure impedance 

between multiple electrode pairs
• DAQM904A

− Sparse documentation, may not allow 
switchable common output

• ADG1406
− Lengthy development time for custom printed 

circuit board
• Initial testing conducted with block sample and 

spring-loaded pogo pin contacts
− May need more reliable connection method 

to resolve small impedances
• Low expected impedance (tens of mΩ)

− Needs sensitive, repeatable measurements
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Additional challenge: Electrical impedance of graphite varies 
considerably

• As-fabricated resistivity of 
graphite can vary by more 
than an order of magnitude

• Can change by 2–3X under 
irradiation

• Currently using POCO AXF-
5Q fine-grain (~5 µm) 
graphite
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A.W. Smith and N.S. Rasor, "Observed dependence of the low-temperature thermal and electrical conductivity 
of graphite on temperature, type, neutron irradiation, and bromination." Physical Review 104.4 (1956) 885.



Finite element model + measurements to solve for 
impedance distribution

∇ � 𝜎𝜎∇𝜑𝜑 𝜎𝜎 = 0

Forward Problem (known 
impedance)

ANSYS finite 
element model

Electrodes

Conductivity or impedance distribution

Potential distribution

Input: Known geometry and 
impedance distribution (σ)

Input: Current applied 
across specific pairs of 

electrodes

Output: Voltages across all 
pairs of electrodes (ϕ)

Input: Measured voltages 
with known current applied 

across each pair of 
electrodes (ϕ)

Input: Known geometry

Inverse Problem (unknown impedance)

Output: Impedance 
distribution (σ)



Crack redirects the 
current through 
adjacent paths
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Analyzing and isolating a localized crack
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Milestones and future work

• M4: Update status of EIT feasibility evaluation
‒ Slides: Due 3/28/2025
‒ Satisfied by an updated version of this presentation

• M3: Complete feasibility assessment of using electrical 
impedance tomography (EIT) for damage localization in 
graphite microreactor components
‒ Report: Due 8/29/2025
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