

DOE-NE Microreactor Program Winter Review Meeting

Instrumentation and Sensors - Microreactor Automatic Control System (MACS/ViBRANT) system

Principle Investigator: Anthony Louis Crawford Ph.D. P.E.

INL Collaborators: Andrew Heim, Lisa Moore-McAteer, Rhett Rovig, Ben Baker, Stu Bondurant, Casey White, Rick Hatch, Eric Lumley, Shaleena Jaison, T.J. Morton,

MACS/ViBRANT Objectives

- Creates a robust, adaptable, interchangeable, hardware-in-the-loop control platform to accelerate development.
- Mature microreactor control technologies toward autonomous operation to improve:
 - Performance
 - Operational efficiency
 - Cost competitiveness
- Advance instrumentation technology by optimizing:
 - Parameter/sensor selection/placement
 - Communication architectures and
 - Surrogate reactor methods/applications

MACS/ViBRANT Development Acceleration

MACS/ViBRANT's agile development and reactor surrogate processes produce high quality project faster

MACS/ViBRANT Contributing Techniques

Environment Simulation

3D Volume interaction

Discrete Mapping

Reactor Light Detection/
Processing

MACS/ViBRANT Key Features

- General microreactor capabilities with accessible interfaces
 - Digital system models
 - Sensors
 - Control Schemes
 - Safety systems (hardware or simulated)
 - Interlocks
 - Reactor protection system, etc.)
- Framework
 - Enables separate effects integration
 - Actuation
 - Reactor (high-fidelity surrogate core)
 - Flux
 - Thermal
 - Etc.

Control Rod Actuator

4 Surrogate Control Drums

Surrogate Core

1 Control Rod

MACS/ViBRANT Cells

- General Microreactor Systems
 - Reactor
 - Coolant
 - Power Extraction
 - Actuation
 - Control

Actuation Cell -

1 Control Rod Actuator (not shown)

A-Frame

VIBRANT

Surrogate Reactor that uses light physics to represent reactor physics in an accessible way.

ViBRANT: Barrel

- 1,500 LEDS on outer surface of 3-layer hexagon pattern
 - 16 photodiodes

ViBRANT: Hexagon

- 60,000 LEDS in 36 pin 3-layer hexagon pattern
 - 16 photodiodes
 - 5 TCs

Key Demonstration Milestones

- Autonomous Control (M2AT-23IN0804054)
- Flexible/Optimized Software Architecture (M3AT-24IN0804031)
- Surrogate Flux and Temperature Integration (M3AT-24IN0804033)
- Validation of Analog Surrogate Absorber Influence (M3AT-25IN0804055)
- Brayton main parameters (M4AT-25IN0804056)
- Bilateral communications (M3AT-25IN0804053)
- Demonstrate a Reactor Startup MRP/ASI Collaboration (M2AT-25IN0804051)

Autonomous Control (M2AT-23IN0804054)

- A. Individual Setpoint Achievement
- B. Four Drum Iteration
- C. Power Setpoint Threshold Control
- D. Overtemperature Scram

Flexible/Optimized Software Architecture

(M3AT-24IN0804031)

Figure 5 - Test interface for MACS gRPC. While not built for beauty, this panel lets developers test every read and write in the MACS gRPC interface to validate its function.

Surrogate Flux and Temperature Integration (M3AT-24IN0804033)

Software/Actuation Architecture

- Closed-Loop Feedback
- AND Autonomous Control

Barrell Reactor Core Surrogate

- Represent Reactivity
- AND Measure Reactivity (x)

Hexagon Reactor Core Surrogate

- Represent Thermal
- AND Measure Thermal (x)

→ ORNL Studies

ASI Studies

MARVEL

Point Kinetics

Validation of Analog Surrogate Absorber Influence (M3AT-25IN0804055)

Results

- Whole Core @ 15% Max Intensity:
 - 2.3% reduction at photodiode
- Partial Core (Hex layer 1) @ 15% Max
 Intensity
 - 22% reduction at photodiode

Implications

- Validates physical absorber capability useful for physical:
 - Reactivity tuning
 - Reactivity control

Open Core

Surrogate Absorber Rod

MARVEL Beyond the Reactor: Non-Nuclear Integration and

Controls as a Stepping-Stone

(Slide pulled from Abdalla Abou Jaoude ANS Winter 2024 Presentation)

Virtual simulation of MARVEL core physics

Electricity generation and dispatch

RAPID MIB (Microgrid in a box)

MAGNET (non-nuclear heat source with test article integrated power conversion unit)

Mobile Data Center

remote operation in nonnuclear system first, prior to testing in MARVEL

Demonstrate Autonomous &

Drum position and core response

Brayton Parameters (M4AT-25IN0804056)
Bilateral communications (M3AT-25IN0804053)

MAGNET: PCU

U.S. DEPARTMENT OF COTICE OF PROPERTY OF THE P

Bilateral communications (M3AT-25IN0804053)

MAGNET-VIBRANT Network Interface

- Facilitated by ICSS network architecture
- Managed by IT/Cybersecurity

Microreactor

Demonstrate a Reactor Startup MRP/ASI Collaboration

(M2AT-25IN0804051)

Build mixed simulation reactor using MACS

- Models shown in blue
- Hardware shown in Gold
- Perform
 - Startup-related tests, show in green (MRP)
 - Operations with various controllers and disruptive events (ASI)
- Upgrade fidelity as we go
 - Various models considered: point kinetics, RELAP, COMMAND, ORNL
 - Various improvements to be done shown in peach boxes

Demonstrate a Reactor Startup MRP/ASI Collaboration (M2AT-25IN0804051)

- Build mixed simulation reactor
 - Physical components include (Gold)
 - Physical rods and rod motion dynamics
 - Motion controllers, loops, and profiles
 - ViBRANT core spatially simulates flux or power with photons
 - Photosensors represent power or flux sensors
 - Software models (Blue)
 - Note: dotted lines are stretch goals

Demonstrate a Reactor Startup MRP/ASI Collaboration (M2AT-25IN0804051)

MRP

- Startup-related procedure methodology
 - Rod worth measurement
 - Hard stop adjustments
 - Measure scram & rod drop times
 - Measure temperature feedback
- ASI
 - Operate with various advanced controller algorithms
 - Demonstrate disruptive events, e.g.:
 - High fuel burnup
 - Backlash in control drum shaft

Demonstrate a Reactor Startup MRP/ASI Collaboration (M2AT-25IN0804051)

- Upgrade fidelity as we go
 - Various models to be used
 - Point Kinetics
 - RELAP & COMMAND
 - ORNL Modelica Models
 - Various upgrades planned
 - Increase ViBRANT core communication bandwidth & update rate
 - Improve performance & stability of motion controllers
 - Reduce noise in Photosensors
 - Etc.

Discussion?

References

- https://www.youtube.com/watch?v=5I925aHIoVE
- https://gain.inl.gov/SiteAssets/MicroreactorProgram/2023MicroreactorProgramWinterReview/TechnologyMaturation-2023.pdf
- https://www.ans.org/news/article-3951/profile-published-on-head-of-marvel-project-atidaho-national-laboratory/
- https://gain.inl.gov/2022MARVELTechRevPresentations/1.07-Crawford_ReactivityControlSystem_2022MARVELTechReview_19Oct22.pdf
- https://gain.inl.gov/SiteAssets/MicroreactorProgram/2022MicroreactorProgramWinterReviewPresentation_2022.03.04.pdf
- https://inldigitallibrary.inl.gov/sites/sti/Sort_38634.pdf
- https://inldigitallibrary.inl.gov/sites/sti/Sort_5337.pdf

