Direct heating of chemical catalysts for hydrogen and fertilizer production using Microreactors

Hitesh Bindra, PI. (Collaborators- Caleb Brooks, Mark Ruth, Melanie Derby)

Project Objectives

- 1)Design MPBHX and compare other IHX alternatives for microreactor integration.
- 2)Exergy and techno-economic feasibility of microreactor integration for hydrogen production and ammonia/fertilizer production.
- 3)Investigate feasibility of microreactors for achieving sustainable agriculture.

- Moving ceramic particles have high volumetric heat density.
- Store heat for later use.
- Catalyst carriers to sustain thermochemical reactions

Review

Prioritized technologies offer competitive levelized cost of heat

Levelized cost of heat (LCOH) delivery across renewable thermal technologies¹

Technologies must be strategically deployed as alternative to natural gas for industrial process heat

		Nuclear LWRs	Nuclear Micro-Rx	Nuclear Advanced	Thermal storage	Electric	Green Hydrogen	RNG	Natural gas (Reference)
	Supply temp (°C)	300	650	900	1,500	1,800	2100	1950	1,950
Food	<130°C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~
Refineries	<480°C	\checkmark	\checkmark	\checkmark	~	~	\checkmark	√	\checkmark
Chemicals	<815°C			\checkmark	~	\checkmark	\checkmark	\checkmark	\checkmark
Paper	<200°C	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Cement	600-1,500°C				\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Iron & Steel	1,600-2,000°C					\checkmark	\checkmark	\checkmark	\checkmark

Hydrogen generation – Thermochemical processes

	Process	Temperature	Efficiency	Fully mature
Steam Methane Reforming	SMR	850-900°C	51-85%	Yes
Partial Oxidation	POX	950°C	60-75%	Yes
Auto Thermal Reformer	ATR	575°C	60-75%	No
Coal Gasification	Coal Gasification	800°C	70%	Yes
Biomass Gasification	Biomass	750°C	35-50%	Yes
Aqueous Reforming	Aqueous Reforming	220-270°C	35-55%	No
Sulphur Iodine	SI	800°C	33-57%	No
Hybrid Sulphur	HyS	850°C	31-49%	No
UT-3	UT-3	750°C	13-45%	No
Copper Chloride Cycle	Cu-Cl	530°C	31-49%	No

Some Microreactor designs with operating parameter details

Reactor	Design	Power	Max. process heat temperature	Operating Pressure	Coolant	Power Conversion System
Westinghouse eVinci	Heat Pipe	0.2-5 MW $_{\rm e}$	600°C	<1atm	Na	Brayton Cycle
NuScale NPM	LWR	10-50 $\text{MW}_{\rm e},$ 40-160 $\text{MW}_{\rm th}$	N/A	12.7 MPa	Water	Rankine Cycle
USNC MMR	HTGR	5 MW $_{\rm e}$, 15 MW $_{\rm th}$	565°C	3MPa(1°), 0.5MPa(2°)	He(1°), molten salt(2°)	Rankine Cycle ^[99]
HolosGen Holos Quad	HTGR	$10-13MW_{e}$	620°C	70bar(1°)/ 35bar(2°)	He, sCO ₂	Brayton Cycle/ Organic Rankine Cycle
LeadCold SEALER	Lead-cooled	$3-10 \text{ MW}_{e}$	417°C	N/A	Pb	Rankine Cycle
Urenco U-Battery	HTGR	10 $\text{MW}_{\rm th}$, 4 $\text{MW}_{\rm e}$	710°C	N/A	He,N	Brayton Cycle
ARC Nuclear Generator	MSR	12 MW_{e}	700°C	N/A	Fluoride salt	N/A

Integration Pathways

Process	Reactor	Primary, Secondary HTF	Heat Exchanger	Material
ATR 575°C	eVinci	Liquid metal, Molten Salt	All designs	Hastelloy
Coal Gasification 800°C	HTGRs	Helium, Molten Salts	Plate and Fin, PCHE	Alloy617, Hastelloy
Biomass 750°C	HTGRs	Helium, Molten salts	Plate and Fin	Alloy617, Hastelloy-N
Aqueous Reforming 220-270°C	All designs	Steam/Water	Shell and Tube, Plate and Frame	S/S
SI 800°C	HTGRs	Helium, Molten Salts	Plate and Fin, PCHE	Alloy617, Hastelloy-N
HyS 850°C	HTGRs	Helium, Molten Salts	PCHE	Alloy617, Hastelloy
UT-3 760°C	HTGRs	Helium, Molten Salts	Plate and Fin, PCHE	Alloy617, Hastelloy
Cu-Cl 530°C	USNC, eVinci	Molten salt, Helium, Liquid metals	All Types(TRL>6)	Alloy617, Hastelloy

Only ATR and Cu-Cl process are feasible with proposed microreactor designs.

Design of Novel MPBHX

Moving Packed Bed Heat Exchanger (Design and Evaluation)

- Gaseous coolants-High Pressure drop- High parasitic Losses.
- Not too many liquid coolants compatible;
- Molten salt security risk
- Ceramic granular flow simple design
- Compare options

	FOM_ht	FOM_pumping
Air	0.07	40,000
Helium	0.12	25,000
Molten-Salt (Chloride)	0.55	15
Packed bed	0.31	12.5

Moving Packed Bed Heat Exchanger (Design and Evaluation)

[A] K. J. ALBRECHT and C. K. HO, Journal of Solar Energy Engineering,141, 3, 031006 (2019).

1 mm alumina particles

58

Program

Technoeconomic Feasibility

Exergy based integration assessment tool

puts Entropy Generation Rate of Counterflow HX... | Entropy Generation Rate of Counterflow HX S... | Entropy Generation Rate of Counterflow HX Combin... | Entropy Generation Rate of Counterflow HX at different Reyno...

H. BINDRA, P. BUENO, and J. F. MORRIS, Applied thermal engineering, 64, 1-2, 201–208 (2014). A. BEJAN, G. TSATSARONIS, and M. J. MORAN, Thermal design and optimization, John Wiley & Sons (1995).

60

Entropy generation number- Assessment parameter

Molten Salt is more appropriate choice based on exergy analysis

Microreactor Program

61

 $N_s =$

 mC_n

Entropy generation number- Assessment parameter

Entropy generation number- Assessment parameter

Entropy Generation Rate of Counter-current HX

$$N_s = \frac{S_{gen}}{mC_p}$$

Variation of the overall heat transfer coefficient with geometric parameters

- Larger tube diameter \rightarrow decreased *h*
- Requires more surface area to meet thermal requirements

He-He cross-flow heat exchanger

Variation of the total cost (in USD) of the heat exchanger with geometric parameters

65

- Larger tube diameter increases material cost.
- Larger diameter reduces pressure drop, lowering pump work and operational cost.

Case: He-He cross-flow heat

Total lifetime Cost, \$		Primary			
		He	Molten Salt	Alumina Particles	
Secondary	He	6.7E4+5	4.33E+5	3.22E+5	
	Molten Salt	6.14E+5	5.80E+4	5.62E+4	
	Liquid Metal	3.87E+5	3.49E+4	2.78E+4	

Heat duty = 10 MWth

Ammonia production-Economics

Haber-Bosch process is an industrial method for producing ammonia

 $N_2 + 3H_2 \rightarrow 2NH_3$

Reactants Nitrogen and Hydrogen

Conditions Temperature: 400-550 °C

Pressure: 250-350 bar

Energy Intensive Process 27.4 -31.8 GJ/t_{NH3} Industrial Ammonia Production

Scale: 1000-1500 t/d

Technology: Microreactors for H₂

Haber Bosch Process

Carbon Neutral farm

Program

[E] Carpenter, Daniel L., et al. Industrial & Engineering Chemistry Research 49.4 (2010): 1859-1871.

69

Nuclear-Integrated Biomass -to-Ammonia Production

Gasifier: Fluidized bed Gasification temperature: 650 °C Gasification yield is referenced from the literature [Carpenter, 2010] Tar reformer CO and H_2 conversion efficiency: 90% PSA H_2 recovery rate: 85% H-B overall conversion efficiency: 97%

Biomass feedstocks

Plant annual ammonia production: 340 tonnes (which is equivalent to the annual ammonia requirement for 10×500 -acre farms)

Plant annual working hours: 7488

Biomass requirement: Corn stover = 1158 tonnes

Wheat straw = 1107 tonnes

Wood chips = 830 tonnes

Energy requirement: Corn stover = 3409 MWh

Wheat Straw = 3212 MWh Wood Chips = 3331 MWh

Nuclear-integrated biomass-to-ammonia production

Process	Energy Requirement, MWh			
	Corn stower	Wheat Straw	Wood Chips	
Gasification	2766	2570	2689	
PSA for H ₂	32	32	32	
Nitrogen separation from air	364	364	364	
Ammonia synthesis (H-B)	247	247	247	

Microreactor

71

Process Description

- Biomass gasification: Converts agricultural residues to syngas (H2, CO, etc.).
- Syngas cleaning and conditioning: Removes impurities.
- Air separation: Supplies nitrogen for ammonia synthesis.
- Ammonia synthesis (Haber-Bosch): Converts H2 and N2 to NH3 using nuclear microreactor energy.

Economic Parameters

Categorization of total cost

Parameters and assumptions for the estimation of LCOA

Money value	US \$ (Aug 2023)			
Plant lifespan	20 years			
Construction year	1 year			
Interest rate	8%			
Inflation rate	2%			
Operations and maintenance	0.65%			
cost growth rate				
Working hours	52 weeks in year, 6 days	in a week, 8	hours per day	for one shift
No of operating labor	2 laborers per shift			
Efficiency of microreactor	36%			
Electricity cost	\$0.21/kWh			
Feedstock cost	80\$/tonne			
Operating labor cost	20 \$/h			
	Equipment cost estimat	ion		
Equipment	Attribute	Designed ca	apacity	
		Corn	Wheat	t wood
		stover	straw	
Gasifier, including gas cleaning	Feedstock, t/d	3.71	3.55	2.66
and tar			178.05	175 57
WGS reactor	Producer gas entering	180.39	170.95	175.57
	the shift reactor, kg/h			
PSA for hydrogen	kg/h (H ₂)	8.26	8.26	8.26
PSA for nitrogen	kg/h (N ₂)	38.51	38.51	38.51
H-B synthesis process	kg/h (NH ₃)	45.43	45.43	45.43

Results and Discussion

- LCOA Findings:
- - Corn stover: \$5.13/kg (FOAK)
- - Wheat straw: \$4.83/kg
- - Wood: \$5.00/kg
- Sensitivity analysis:
- - Reactor cost dominates (88-90% of total capital cost).
- - Feedstock and labor costs have a modest impact.
- NOAK- using guidelines published by INL, the LOCA costs were found to be lower.

$$LCOA = \frac{\frac{\sum_{t=0}^{n_{life}} TCC_t + OPC_t}{(1+r)^t}}{\frac{\sum_{t=0}^{n_{life}} P_t}{(1+r)^t}}$$

TCC : capital cost*OPC*: operating cost*P* : annual ammonia production*r*: discount rate

Estimated levelized cost of ammonia production

75

TCC : capital cost

OPC: operating cost P: annual ammonia production *r*: discount rate

The cost of hydrogen production based on water electrolysis using nuclear energy is obtained using the IAEA HydCalc tool.

www.iaea.org/topics/non-electricapplications/nuclear-hydrogen-production

Summary

- Industrial process heat is an important sector which needs carbon emission reductions.
- Ammonia production powered by nuclear microreactors can be a critical pathway to address these goals.
- Economic feasibility was conducted for ammonia production using nuclear microreactors.
- Ammonia production using electrolysis based nuclear hydrogen is significantly more expensive as compared to steam methane reforming based hydrogen.
- This cost can be reduced by adopting agro-feedstocks and thermochemical gasification process to produce hydrogen and then ammonia.
- Current LCOA higher than traditional methods but competitive with nuclear-powered electrolysis.
- Cost reduction possible with reactor standardization and improved learning rates.

List of students

- Zayed Ahmed (Obtained PhD and now working as Research Engineer at Applied Cooling Technologies)
- Bailey Strine (Obtained MS and now working as Engineer at Black & Veatch)
- Ketan Ajay (Postdoctoral fellow, now Research Associate at McMaster University)
- Anshuman Chaube (Now PhD Student at Penn State)
- Jake Marr (Undergrad, Now MS student at Purdue)

References

[1] Gupta, D., Kafle, A., & Nagaiah, T. C. (2023). Sustainable ammonia synthesis through electrochemical dinitrogen activation using an Ag 2 VO 2 PO 4 catalyst. *Faraday Discussions*.

[2]Smith, C., Hill, A. K., & Torrente-Murciano, L. (2020). Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. *Energy & Environmental Science*, *13*(2), 331-344.

[3] Ruddock, J., Short, T. D., & Brudenell, K. (1970). Energy integration in ammonia production. *WIT Transactions on Ecology and the Environment*, 62.

[4] Tock, L., Maréchal, F., & Perrenoud, M. (2015). Thermo-environomic evaluation of the ammonia production. *The Canadian Journal of Chemical Engineering*, 93(2), 356-362.

[5] Pfromm, P. H., & Aframehr, W. (2022). Green ammonia from air, water, and renewable electricity: Energy costs using natural gas reforming, solid oxide electrolysis, liquid water electrolysis, chemical looping, or a Haber–Bosch loop. *Journal of Renewable and Sustainable Energy*, *14*(5).

[6] Grundt, T., & Christiansen, K. (1982). Hydrogen by water electrolysis as basis for small scale ammonia production. A comparison with hydrocarbon based technologies. *International Journal of Hydrogen Energy*, 7(3), 247-257.

[7] Will, M., & Lukas, L. (2018). Introducing renewable ammonia by Thyssenkrupp. Rotterdam, Netherlands: NH, 3, 17-18.

[8] Morgan, E. R., Manwell, J. F., & McGowan, J. G. (2017). Sustainable ammonia production from US offshore wind farms: a technoeconomic review. *ACS Sustainable Chemistry & Engineering*, 5(11), 9554-9567.

[9] Ghavam, S., Vahdati, M., Wilson, I. A., & Styring, P. (2021). Sustainable ammonia production processes. *Frontiers in Energy Research*, *9*, 34.

