Post-Irradiation Examination of Yttrium Hydride at Oak Ridge National Laboratory

M Nedim Cinbiz^{1*}, Annabelle Le Coq¹, Kory Linton¹,

¹Oak Ridge National Laboratory

Annual Program Review Meeting – March 5, 2025

Outline

- Evolution of hydride irradiations
- Motivation: Why are we doing PIE on yttrium hydrides?
- Specimens and HFIR irradiations
- PIE plan
- PIE results
 - Optical examinations, dimensional change
 - Thermal property measurements and data analysis
 - XRD approach and preliminary results
 - Microstructure characterizations
- Conclusions

Major steps in yttrium hydrides irradiations and PIE

The Neutron Displacement Damage Can Assist Hydrogen Loss From Yttrium Hydride During Reactor Operation

H redistribution due to ∇C and ∇T

The Phase Stability Of YH_x Needs To Be Addressed From The H Retention Aspect Of Hydride-Moderated Microreactors

Major Takeaways From Microreactor PIE ?

Thermal property measurements indicated H redistribution in same capsule specimens

Laboratory XRD and IGF also confirmed H loss/gain

A Robust H Retention Metric For Irradiated Specimens Is Needed

Major Takeaways From ORNL/HFIR Irradiations in 2023

- High energy X-rays indicated unexpected H recovery during heating of irradiated specimens
- Microstructure characterization indicated cavities in the matrix due to irradiation damage

Cavities or closed-pores are likely beneficial for H retention

Impact of Cavities on H Retention Needs To Be Determined

Based On What We Learned From Microreactor and ORNL Specimens PIE, Goal Is Redefined As

Can We determine a H retention/redistribution metric for irradiated moderator that supports material qualification and reactor designers?

Materials: Yttrium Hydride Fabrication Was Performed Using Gaseous Diffusion Under Legacy TCR Program

Optical microstructure of a

Flowing hydrogen gaseous diffusion (massive hydriding)

EBSD of YH_{1.83}

Cinbiz et al, Materialia, 2023

Starting Y (99.99% TREM) metal Main impurities were CaF_2 , YOF, Y_2O_3

Starting material is like LANL specimens used in Microreactor irradiations

High Flux Isotope Reactor (HFIR) Is A Multi Role Reactor With Isotope Production, Materials Irradiation, And Neutron Science

- HFIR positions enable to accumulate significant dose in samples
 over a short duration
- 1 HFIR cycle ~ 24 days
- 5-7 cycles per year
- Constant power (85MW)
- Instrumented and drop-in

(passive thermometry) irradiation capabilities

The ultimate advantage of HFIR İS THE **STEADY-STATE** operation for successive reactor cycles

Yttrium Hydride Specimens Were Irradiated With A Drop-In Capsule With Passive SiC Thermometry

Capsule average parameters

Each capsule holds 16 disc-shaped samples and 8 SiC thermometry (TM)

Pure Molybdenum Tubing Was Used As Hydrogen Barrier During Irradiations

• Weld testing included bubble test, and He leak test

To mature hydride technology, cladding joining techniques need a dedicated R&D

PIE Activities and Status

PIE Activity	Goal	Comments	Status
Inventory and basic visual examination	Observe structural integrity	Completed	
Dimensional inspection	Determine dimensional stability	etermine dimensional stability Completed	
SiC TM analysis	Determine irradiation temperature	50% completed; decision making	4 TMs were tested
Specific heat capacity	Determine transition temperature for H retention metric		On-going; 6 specimens were tested; 5 remaining*
Thermal diffusivity	Same as specific heat	Merged with DSC due	
Hardness	Structural integrity	to shared goal	
X-ray diffraction	Determine the local phase fractions in a sample	BNL tests on March 10th	6 specimens were tested; 10 remaining
Microstructure characterizations	Determine cavity microstructure and their density for H gain/loss behavior		3 samples are completed; 2 remaining

In total, 40 irradiated specimens will undergo PIE

Visual Examination Of specimens

301	Intact	Broken	Intact	Intact	Intact	Intact	Intact	Broken
КНХ	Chipped	Chipped	Intact	Intact	Intact	Intact	Intact	Intact
503	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact
Н, Н,	Intact	Intact	Intact	Intact	Intact	Intact	Intact	Intact

Specimens were laser marked to determine dimensional change

Samples characterized from the 1 st campaign					
	IDs H/Y Condition				
	M004	1.83	Intact		
	M007	1.83	Intact		
	M100	1.83	Intact		
	M011	1.83	Intact		
	M013	1.83	Intact		
	M081	1.83	Intact		
	M088	1.83	Intact		
	M052	1.83	Intact		

Similar Surface Features Were Present As Observed In MRP PIE

Dimensional Analysis of Specimens

Overall Specimens Tend To Shrink → Density Increase → It Is Not Directly Related To H Retention → MRP PIE Results

Average dimensional change (A+B+C+D+E+F)

Differential Scanning Calorimetry Results

We will determine the H/Y ratio after irradiation and heat treatment to determine the amount of recovery Raw data example on

There is ΔT between heating and cooling transition temperatures which is directly related to H/Y ratio, thus H retention

High Energy X-ray Diffraction in Transmission Mode

High-energy XRD

February 7: BNL also performed base XRD collection on samples with different H/Y ratios Increase in α Y peaks is related to H loss or trapping in cavities

Normalize Intensity (a.u.)

We are working on developing a correlation b/w hydride and yttrium peak intensities

Microreactor

Data Analysis Of Tested Specimens Is Ongoing Cavity Contribution Needs To Be Understood

Microstructure Have More Impact On H Retention Behavior

Hydride's H retention may be improved by impurity traps

Milestone

Title	Description	Progress/Due Date	Challenges
M2AT-25OR0804091 - Complete full Post Irradiation Examination of HFIR irradiated YHx specimens to fill irradiation performance knowledge gaps	Level 2 Milestone (ORNL Technical Manuscript) - YHx material properties under combined effects of high flux irradiation targeting ~2dpa at target test temperatures of 600C.	On Track - September 26, 2025	Nothing to report

Everything is on-going as planned!

Conclusions

- Confirmed that dimensional measurements (MRP ORNL PIE), volume, and mass (MRP PIE + TCR PIE) are misleading to assess H/Y ratio of irradiated specimens due to microstructure evolution
- Microstructure characterization indicated an impact of radiation damage on amorphous region, oxide development, and cavity density; which can act as H retention relevant features
- DSC method is also a strong technique to determine the transition temperature and H/Y ratio
- Transmission mode XRD is a very strong tool to determine the phase fractions of hydride and yttrium metal, but XRD does not see H in cavities

Acknowledgements

- Diane Li, John Jackson, and Holly Trellue for their kind funding support
- Stephanie Curlin (ORNL) for thermal property measurements
- Shaileyee Bhattacharya and Yan-Ru Lin (ORNL) for XRD data analysis and TEM characterizations
- David Sprouster (BNL) for XRD

