High Temperature Moderator Containment:

Advanced Moderator Module (AMM) Concept

March 5, 2025

Sumit Bhattacharya, Abdellatif Yacout

Argonne National Laboratory

Introduction: Yttrium Hydride based Moderator designs

Advanced neutron moderators are required for microreactors due to the:

- Lower fuel enrichment of HALEU (<20%) instead of high enriched uranium.
- Compact size.
- High efficiency/high temperature requirements.

Hydrogen is the best moderator as it has a low Z number. So, materials with high H₂ density will be ideal candidate, such as metal hydrides.

- Yttrium hydride YH_x (out of all metal hydrides) shows the best potential, because:
 - Exceptional high H₂ concentration (figure a),
 - Low neutron absorption cross section,
 - Can sustain high temperature with low H₂ dissociation pressure (figure b),
 - Good thermal conductivity and high melting point.

- Even with low H_2 dissociation for $YH_{x,}$ it is still ~1 atm at ~850 °C (see, Figure (b)). Consequently, it needs to be encapsulated to prevent H_2 loss during long term operations.

- ANL is using a SiC/Nb based moderator design to encapsulate the YHx.

Overview: High Temperature Moderator Containment (ANL contributions)

Heat & radiation resistant high Advanced Moderator Module (AMM) temperature barrier coating concept **TZM based Moderator Design Advanced Moderator Module Design** (a) Graphite Graphite H₂ Permeation tal Liner ic₁/Sic H₂ Permeation Barrier Barrier ZM-C Diffusion **Nb-SiC Diffusion** Barrier Barrier Containment: Nb liner + SiC

- H₂ permeation barrier and graphite interaction barrier materials and architecture selection:
 - Metal ceramic multilayer architecture.
 - $Cr_{x}Al_{y}/Al_{2}O_{3}$ based design.
 - Optimized individual layer thickness.
- Confirmation of desired barrier properties:
 - Thermal cycling resistant
 - Resistant against radiation damages.
 - Significant reduction in H₂ permeation.
 - Prevents high temperature graphite interactions

(FY-23, completed)

Preparation of AMM modules:

- Implementation of developed H₂ barrier design • within Nb tubes.
- Confirmation of mechanical and thermal ٠ properties of the implemented barrier coating.
- Manufacturing outer SiC shells. ٠
- Shrink fitting SiC shells over coated Nb liners. ٠
- Hermetic sealing of coated Nb liners ٠ (welding).

(FY-24, completed)

Advanced Moderator Module (AMM) concept (FY-25, ongoing) **Advanced Moderator Module**

- Manufacturing AMM modules:
 - YHx pellet loading within prepared AMM shells (Nb liner with SiC CMC) in FY24.
 - Hermetic seal to generate the module (TIG welding).
 - Successfully created multiple modules.
- Confirmation of AMM performance: ٠
 - High temperature long term performances (Ongoing collaboration with LANL)

Recap of properties of the developed H₂ permeation barrier in FY 23

H₂ Barrier Coating (Thermal & Radiation Performance)

FIB cross section of as prepared coating

Schematic of PVD Cr sputtering

Developed Multilayer Permeation Barrier Design

- Optimal design: thin layers of Al₂O₃ combined with thin Cr_xAl_y most stable.
- Combination of ALD and PVD has been used to generate the metal ceramic architecture.

High Temperature Performance of the Functional design

- No surface cracks.
- No separation at the interfaces.
- No interaction between metal/ceramic layers.

ATLAS Materials Irradiation Station (AMIS)

~10 dpa (5E16 ions/cm²), AMIS facility

~11 dpa (4E15 ions/cm²) IVEM facility

Radiation Tolerance of Developed Permeation Barrier.

- Microstructure and material phases intact
- No observable diffusion & void formation between multilayers

H₂ Barrier coating (Mechanical & Permeation Performance)

Mechanical behavior (localized deformation via micro indentation)

- At max load region, Al₂O₃ and CrAl deformed, but no layer cracks or separation at other coating regions
- Crack traveled through first few layers, but stopped at one of the CrAl layer

TEM image taken from multilayer cross section after exposure to **pure H**₂ (100 Kpa) at 700 °C

PRF of best performing coating at different temp.

Static Gas Absorption and Permeation (SGAP) Testing at INL:

- Permeation reduction factor (PRF) quantifies hydrogen permeation reduction, serving as a metric for the coating's success.
- ~50 times PRF is achieved with the multilayer design, measured at 700 °C, against pure H2 (100 Kpa)

Recap of AMM design and step by step preparation in FY 24

Advanced Moderator Module (AMM) Concept

Argonne National Laboratory is developing an AMM featuring a YH_{2-x} metal hydride, encased in a niobium (Nb) liner with a H₂ barrier to contain hydrogen at high temperatures, and a silicon carbide (SiC) composite cladding for structural integrity.

Advantages

- Utilizing metal hydrides, like YH_{2-x}, allows for optimal moderation.
- AMM's encapsulation method promises an improved performance:
 - Improved H₂ retention.
 - Reduced thermal neutron absorption compared to other approaches (e.g., SS, high temp. alloys, ..)
 - Successful deployment will support small microreactor cores with extended operational lifetimes.

Advanced Moderator Module (AMM) manufacturing steps

- 1. Implementation of developed H₂ barrier design inside & outside of 10 mm O.D. Nb liners/tubes Implementation completed
- 2. Manufacturing outer SiC composite shells via polymer impregnation and pyrolysis (PIP) Manufacturing completed
- 3. Form SiC composite shells on Nb tubes Manufacturing completed
- 4. Welding end caps Trial completed
- 5. Loading of YH_{2-x} pellets (from LANL)- completed

AMM prototype manufacturing – Ongoing in FY25

Schematic of the AMM Cross section , showing the metal hydride pellet within Nb liner, and enclosed by two Nb caps, welded on both ends.

Step-2

SiC shells prepared via PIP technique where the polymer infiltrated SiC fiber pre-form prepared over graphite mandrel.

In collaboration with Ceramic Tubular Products (CTP)

Step-3

Cryogenic Shrink fitting

Despite extreme low temperatures & stresses of rapid contraction/ expansion, Cr_xAl_y/Al_2O_3 coating remain adherent to Nb substrate.

End cap weld development

The TIG weld has generated a secure and consistent weld joint.

Step-5

Loading YH_{2-x} pellets and welding end caps

More details on individual steps can be found in our earlier reports and Microreactor program review presentations

FY 25 AMM Proof of Concept: manufacturing & testing activities

Work scope for FY25 and progress made

1. Manufacturing AMM modules (Completed):

- AMM shells (Nb liner with SiC CMC): prepared in FY24
- YH_{2-x} pellet loading
- Hermetic sealing (TIG welding)

2. High temperature performance (Ongoing collaboration with LANL)

- Long term thermal testing (Ar and Vacuum environment).
 - Weight change tracking (H₂ loss)
 - X-ray computed tomography to verify the status of the YH pellets, Nb liner and weld.
- Non uniform heating of the AMM.
 - Thermal gradient impact
- Analysis after thermal studies.
 - Evaluate status of the different components: SiC CMC, Nb liner, Welding and YH pellets

Advanced Moderator Module Manufacturing

Images of the first completed ANL made moderator module.

AMM Manufacturing (continued)

Demonstrated manufacturing of different size modules

He leak check inspections

CS/AN FORME 700	CENTRAL SHOPS INSPECTION MELD TECHNIQUE RECORD				PAGE 1 OF T	
		INSPECTION REQUIREM	UNTS			
DIVISION: CFC	PERSON SUMMIT BHATTACHARYA JC			JOB NO.: 14-	@ ND_ 14-0890	
INSPECTION CODE:	CTION CODE: ACCEPTANCE CRITER		TINI PART INT		OLUME:	
		1.9 N 10" red. corses	(11")ed. corses		MAX PRESSURE	
PART NAME: NIOBILIM TUBES		JCP# NA	D	NG. NO.:		
PART NUMBERISH L	ISTED BELOW		1.4			
PART DESCRIPTION; Ingue companyme, we INSPECT WELD & AND VERIFY NO TUBES TESTED: D #4 / TUBE #4A-L	IDENTIFICATION Not joint owners NINTS FOR LE HELIUM LEA ESIGN /11 / TR	N OF PART AREA(E) TO BE (shift) part age, etc.) AKS USING PROVIDED KS O(T OF PELLET TUB BE 45, DESIGN #2 / TUB	NSPECTE VACUU ES, E #2A, D	O & SPECIAL F M CYLINDE ESIGN #4 - T	NSTRUCTIONS R TO INSER'I TUBE UBE #18, DESIGN	
ATTACHMENTS.	(X) SKETCH	LT DRAWING (1 074	ED.			
		FOR CS/IN LISE ONL	ý.	-		

	FOR CS/IN USE ONLY			
PART IDENTIFICATION:	INSPECTION (INSPECTION DATE: 01/10/25		
NICEION TOBES	PROCEDURE	PROCEDURE Q-005		
MSLD MFG. Adven	MODEL: ASM 130 PUMPING RAT	PUMPING RATE: TLIS		
AUX. HOUGHING PUMP MEG.: NIA	PUMPING RAT	PUMPING RATE: 184		
AUX. VALVESIS) TYPE: N/A	SIZE: N/A			
HOSE OF AUX. MANIFOLD TYPE N/A	LENGTH: N/A M	IN LD NA		
MARKING & SEALING MATERIAL WA				
METHOD OF REMOVING MARKING & SEAL	NO MAT'L. Account and Alashal			
STANDARD CALIBRATED LEAK MEG. Adue	TYPE: EXTERNAL	TYPE: EXTERNAL		
STD. CAL, LEAK RATE: 936U-8 mbar Va	DATE LAST CALIBRATED:	DATE LAST CALIBRATED: 01/10/25		
LEAK TEST METHOD: VACUUM JUHE				
RESPONSE TIME OF CALL LEAK - I so	TRACER GAS CONCENTRATION	TRACER GAS CONCENTRATION 99 004		
APPLICATION TIME OF HE TO PART Block.	TEST TIME: 15 MIN. EACH	TEST TIME: 19 MIN. EACH		
SYSTEM SENSITIVITY: 1.0 X 10" mbm L/5	TEST SENSITIVITY: 1.5 X 101 sd.	TEST SENSITIVITY: 1.5 X 101 std. solver .		

Suppression of possible H₂ permeation through weld HAZ areas

Issue: Affected weld zone as H₂ permeation weak spot

Welded Nb cap on the Nb tube No coating

Resolution: Applied external multilayer coating

FIB analysis after welded region has been coated and HT at 800 °C

Currently Tested AMMs

AMM ID	YH pellet ID and as received Wt.	H _{mass} & H/Y ratio	Weld cap coating	Studies (LANL/ANL)	
Tube design 4, Sample 4A-1	#102523I- 6.3512 g #102523E- 6.3431 g	0.1363g & 1.9343 0.1366g & 1.9412	500 nm Al ₂ O ₃	Tested at ANL for 100 Hrs. at 800 °C under vacuum.	Shipped to LANL (HT 800 °C) Under vacuum
Tube design 2, Sample 2A	#102523O- 6.3415 g #102523G- 6.3466 g	0.1363g & 1.9374 0.1317g & 1.9300	500 nm Al ₂ O ₃	Tested at ANL for 100 Hrs. at 800 °C under vacuum	Shipped to LANL (HT 800 °C) Under vacuum
Tube design 4, Sample 1B	#102523F- 6.3397 g #102523V- 6.3503 g #102523Q- 6.3374 g	0.1357g & 1.9292 0.1364g & 1.9361 0.1358g & 1.9314	2X 300 nm Al ₂ O ₃ /300 nm CrAl	ANL (Thermal Cycling 800 °C) Under vacuum	
Tube Design 5, Sample 3	#102523T- 6.3456 g #102523X- 6.3493 g #102523W- 6.3496 g	0.1365g & 1.9390 0.1364g & 1.9364 0.1363g & 1.9348	3X 300 nm Al ₂ O ₃ /300 nm CrAl	ANL (Thermal cycling 800 °C) Under vacuum	
Tube Design 4, Sample 4B-1	#102523N- 6.3391 g	0.1360g & 1.9338	300 nm Al ₂ O ₃	Tested at ANL for 500 Hrs. at 750 °C under Argon	Shipped to LANL (being tested at 800 °C) Under vacuum
Tube Design 2, Sample 1C	#102523C1- 6.3682 g	0.1362g & 1.9276	300 nm Al ₂ O ₃	Tested at ANL for 500 Hrs. at 750 °C under Argon	Shipped to LANL

AMM Heat Treatment at 750 °C (UHP Ar gas)

AMM 4B-1

SiC CMC shell behavior at 750 °C (UHP Ar gas) (C)

Purpose: Understand potential contributions to weight loss from de-gassing of the modules SiC CMC component

SiC composite shell O.D. : 10.8 mm – 11.2 mm Wall thickness: 0.45 mm Length: 67.0 mm

SiC composite shell O.D. : 10.8 mm – 11.2 mm Wall t Leng

all thickness: ength: 36.5 m	Complete AMM	
AMM 1-C (wt. in g)	H/Y ratio	H/Y ratio (corrected*)
10.45592g	1.9276	1.9276
10.45382g (100 hr.)	1.8979*	1.9149
10.45357g (<mark>200 hr</mark> .)	1.8944*	1.9148
10.45341g (<mark>500 hr</mark> .)	1.8921*	1.89217
	<u>ر</u>	<u>. </u>

Microreactor

(C')

Summary: Advanced Moderator Module (AMM) Concept

Successfully completed manufacturing different size AMM samples

- Using 10 mm O.D. Nb tubes with 0.3 μ m wall thickness. Images
- AMMs with various lengths manufactured
- Current capability: can manufacture modules with up to 1 meter (L) with 45 mm (O.D.)

High temperature performance

(Ongoing collaboration with LANL)

- Long term thermal testing (*Ar and Vacuum environment*).
- Non uniform heating of the AMM.
- X-ray computed tomography to verify the status of the YH pellets, Nb liner and weld.

Images of the first completed ANL made moderator module.

Initial thermal testing results

FY25 Remaining Goals: Demonstrate working AMM samples under prototypic thermal conditions & accumulate performance data for their components

- Post testing characterizations:
 - SiC CMC, Nb liner and coating, Welding and YH pellets

Acknowledgement

- (ANL) Yinbin Miao, Nicolas Stauff, Dean R. Walters, Greg Fletcher, William F. Toter
- (INL) Chase N. Taylor

(LANL) Erik P. Luther, Caitlin Anne Kohnert, Michael A. Hahn, Tom Nizolek, Holly R. Trellue

70 YEARS OF SCIENCE & INNOVATION

