INL/MIS-25-83577

MARVEL Microreactor Project Update

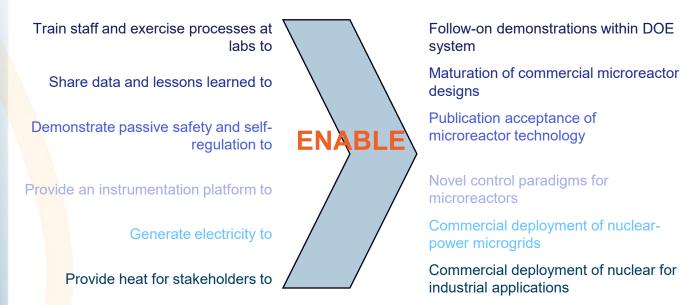
2025 Microreactor Annual Review

March 2025

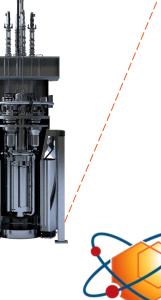
Abdalla Abou-Jaoude

MARVEL Can Enable a New Class of Nuclear Reactors

(Microreactor Applications <u>R</u>esearch, <u>V</u>alidation & <u>E</u>vaLuation)

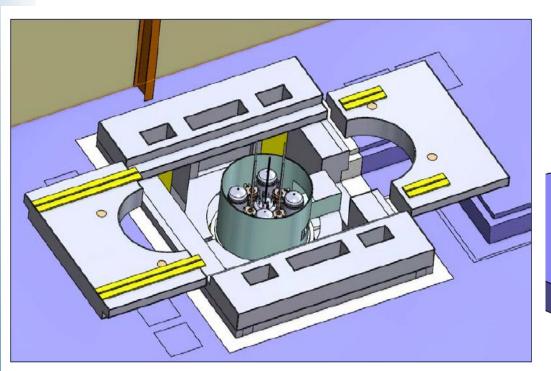

Project Goals:

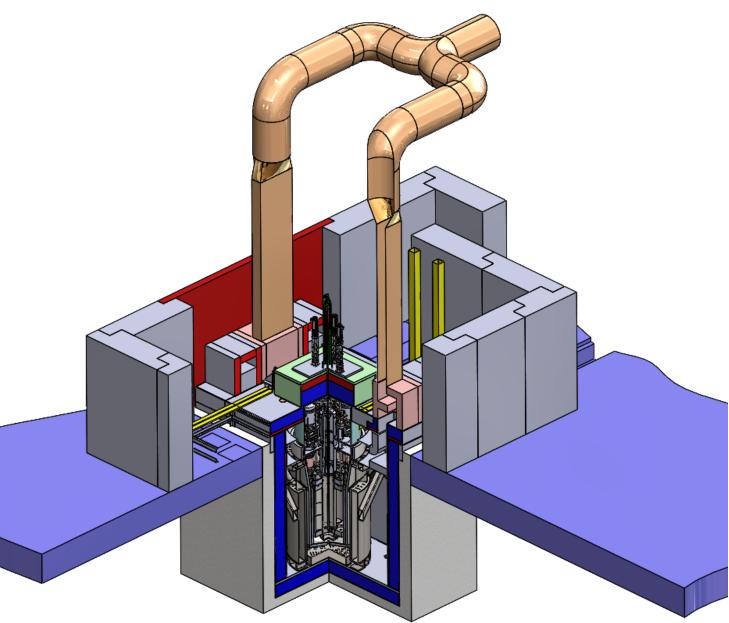
Development of a small-scale microreactor that provides a platform to test unique operational aspects and applications of microreactors


Primary Objectives:

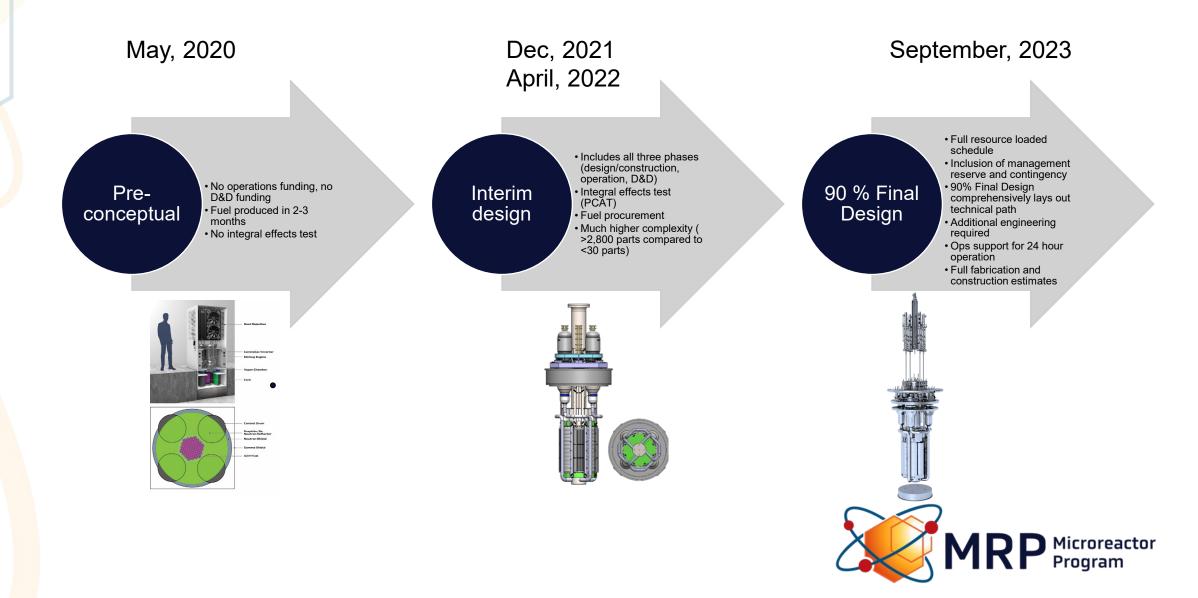
- **Operational** microreactor
- Produce combined heat and power (CHP) to a functional microgrid
- Share lessons learned with commercial developers
- **Train** future operators

National Impact:

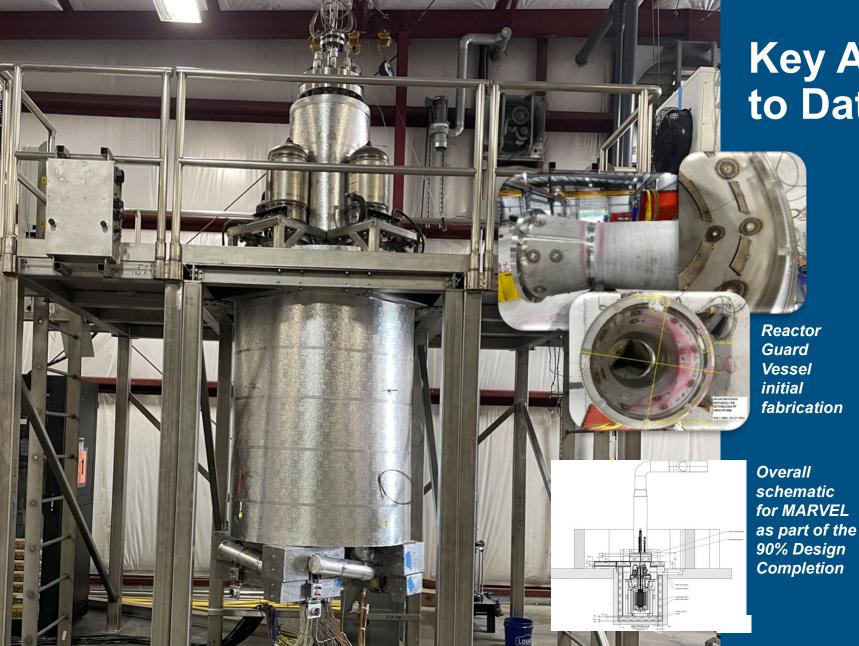

- 85 kW-thermal
- <20 kW-electric
- ~15 feet tall, <10 tons
- NaK primary coolant, natural circulation
- TRIGA fuel
- Radial control drums
- Graphite, Be and BeO reflector


Microreactor

- 2 operators
- Self-regulating


TREAT- <u>Reactor</u> <u>Experiment</u> <u>Cell</u> (T-REXC)

- Multi-use facility
- MARVEL is the first experiment
- All components are general purpose


MARVEL Design History

MARVEL Status: System Overview

Systems	Design Status	Procurement Status				
MARVEL Reactor						
Core/Fuel Design	Completed	Fabrication contract awarded				
PCS Design	Completed	Fabrication contract awarded				
Guard Vessel	Completed	Fabrication complete				
I&C Design	90% (excluding heat extraction)	Some parts procured				
RCS Design	90-95%	Prototype completed, final system under fabrication				
Reflector Support Structure Design	Completed	Contract awarded				
MARVEL Balance of Plant						
IHX Design	In progress (80%) tied to Heat Extraction	Scoping options				
Heat Extraction System	In progress (20%)	Quotes being procured				
TES	In progress (5%)	Scoping options				
Power conversion system	In progress (5 to 50% sCO2 vs. Stirling)	Quotes being procured				

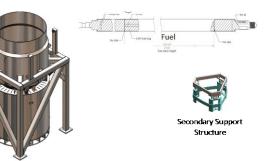
Key Accomplishments to Date

90% Final Design: 247 engineering documents, including 35+ Engineering Calculation Analysis Reports (ECARs), addressed 520 comments in two design reviews

Primary Coolant Apparatus Test- PCAT: Electrically heated replica with 36 heating elements. Data used to validate models, per NQA-1. Initial startup on September 19th, 2023

Long-Lead Procurement: Fuel fabrication contract with TRIGA International signed. Material procurement & fabrication of 316H SS structures, systems, and components

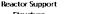
Summary of Recent Developments


MARVEL is the first DOE reactor to achieve 90% final design.

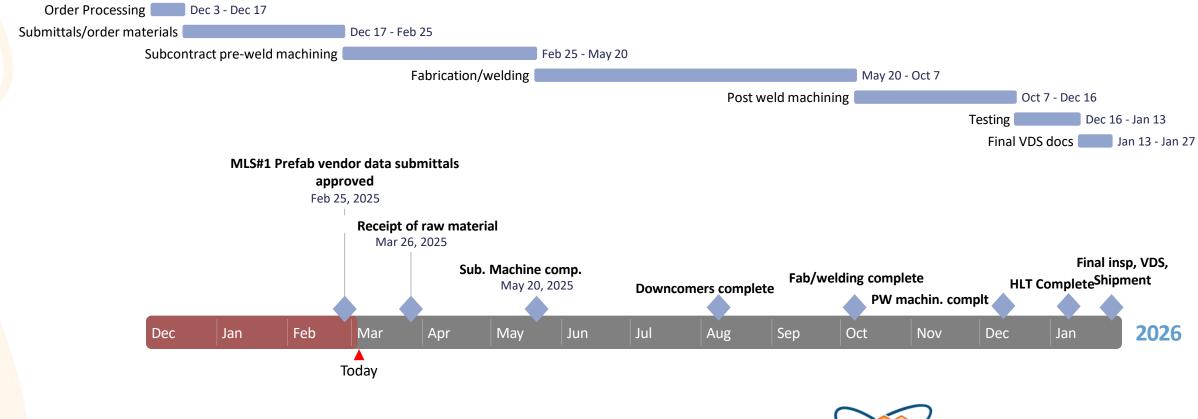
MAJOR FY23 MILESTONES

- 90% final design completed September 2023
- Started operations at Primary Coolant Apparatus Test (PCAT)
- Fuel fabrication contract with **TRIGA** International signed

- Submit preliminary documented system analyses (PDSA) to DOE-ID in July 2024
- Fuel fabrication started in February 2024; delivery planned for March 2025
- Guard vessel fabrication started in December 2023
- **Control Drum qualification** testing completed. Fabrication initiated, expected complete by September 2024



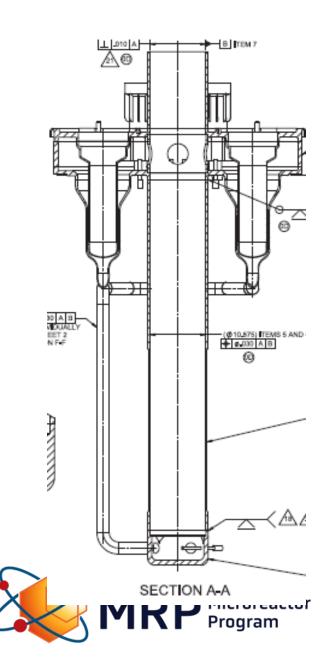
Primary Coolant Boundary



Reactor Support Frame

FY25 Priorities: Construction of Primary Coolant System (PCS)

PCS Timeline and Schedule Overview



PCS Fabrication Plan

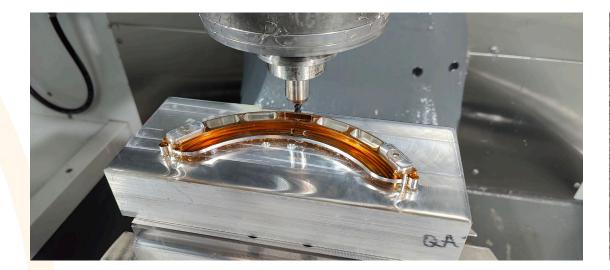
Fabrication Key Phases:

- PHASE 1: Pre-Fab operations (order processing, submittals, Material Procurement, initial material processing)
 - CFI to procure materials, process materials, receive components in Group 3&4 difficulty machining categories
- PHASE 2: Subcontract pre-welding machining operations
 - CFI to manage group 2 machining vendors via on-site surveillance, kickoffs, regular meetings, etc.
 - Key operation of core-barrel machining to be performed by Sawyer Manufacturing
- PHASE 3: Welding operations withing CFI
 - Risk mitigation plan includes use of multiple Bluco fixtures, tables, rings, etc. to assist with alignment, positioning, and weld distortion minimization.
- PHASE 4: Post Weld Machining Operations
 - CFI to ship weldments to group 1 vendor for PW machining at Metalex (on-site surveillance, kickoffs, regular meetings, support offered by Bluco/CFI)
- PHASE 5: Testing, Final Inspections, Shipping
 - Return weldments to CFI following machining for final inspections, pressure testing, and Helium Leak Testing to be performed by ATS at our facility

FY25 Priorities: Reactor Control System Fabrication

RCS Fabrication Work Control:

- WO 359037 MARVEL Control Drums
 - All metallic components for the drums, excludes BeO and B4C components.
 - Will supply enough for five control drums (four drums plus one spare).
- WO 374089 MARVEL CIA Actuator System
 - Components to assemble two Central Insurance Rod drive mechanisms (one system plus one spare).
 - Two Central Insurance Rod Connecting Rod assemblies.
- WO 374102 MARVEL Control Drum Actuators and Seals
 - Components to fabricate five control drums and drive mechanisms (four systems plus one spare).
 - Components to fabricate five control drum seal assembles (four systems plus one spare).
- WO 374217 MARVEL CD Drive Shafts, Bearings, and Gray Rod
 - Components to fabricate five control drum actuator shaft assemblies (four systems plus one spare).
 - Procurement of five sets of High Temperature Bearings for the reactor structure and fabrication of housings for the spherical bearings
 - Fabrication of two sets of Gray Rods, two of each detail for a total of six.
- WO 374196 MARVEL Black Rod Cladding Assembly
 - Two CIA Black Rod Cladding Assemblies (includes assembly with B4C pellets and ASME Section III welding of Clad Assemblies).
- WO 374011 MARVEL RCS Test Stand and Standoffs
 - Components to fabricate one test stand.
 - Fabricate four testing standoffs.



Control Drum Testing

RCS Fabrication Status

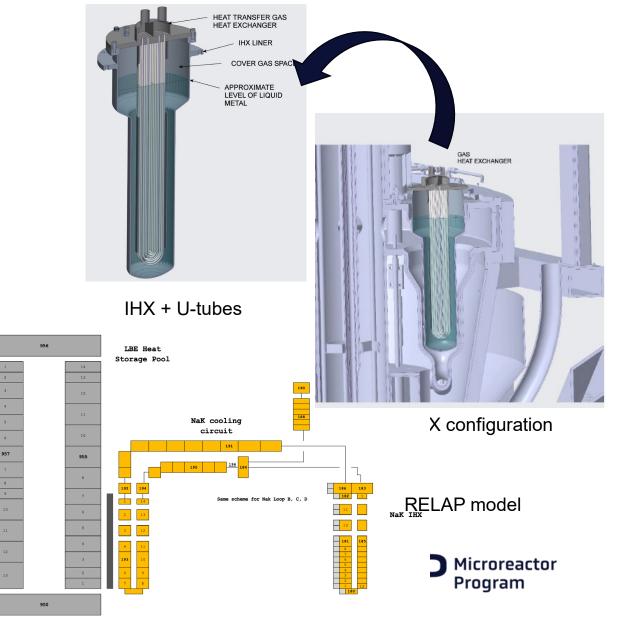
- Procurement Progress
 - Over 200 separate items being tracked in procurement.
 - Approximately 150 delivered to MFC as of 2/16
 - Metal rough stock being prioritized in receipt inspection to support fabrication.
- Internal Fabrication Progress
 - Fabrication efforts have started on the stainless steel components of the Control Drums in WO 359037, with successful first article inspections.
 - Successful strategy developed for difficult materials with extremely tight tolerances.

PCAT Testing Round 3

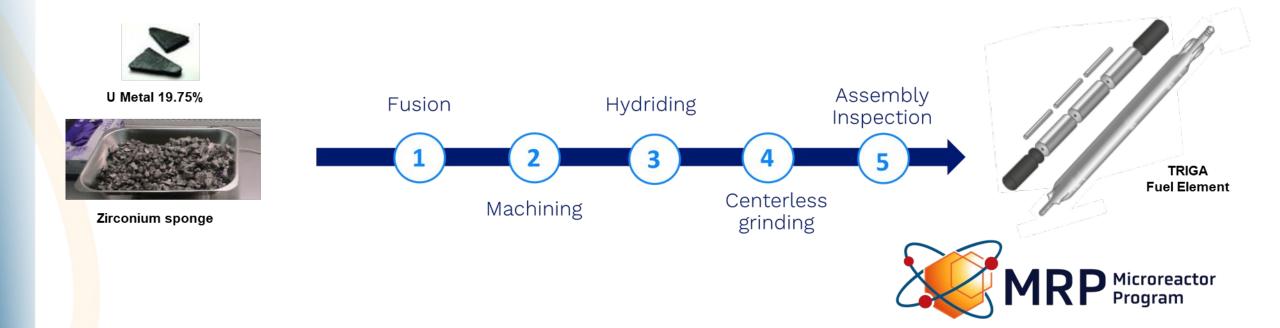
Stirling engine replacement with heating coils:

- Moving away from Stirling engines: replacing with fluid circulating in coil
- Finalizing EC/Engineering Paperwork
- Testing planned to restart in March
- Data Validation of RELAP
- Documentation finished April 30.

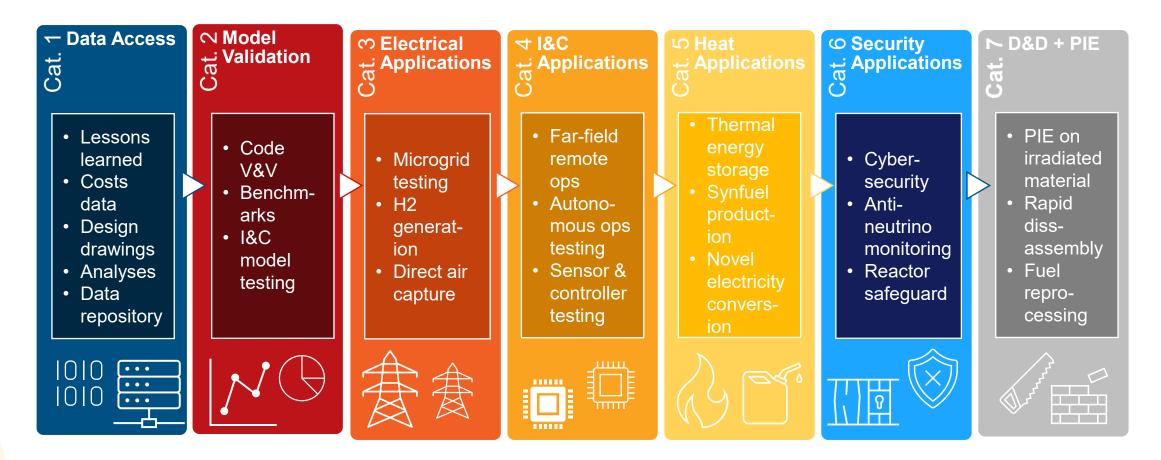
PCAT fabrication at INL



Heat Extraction System: Analysis of Alternatives

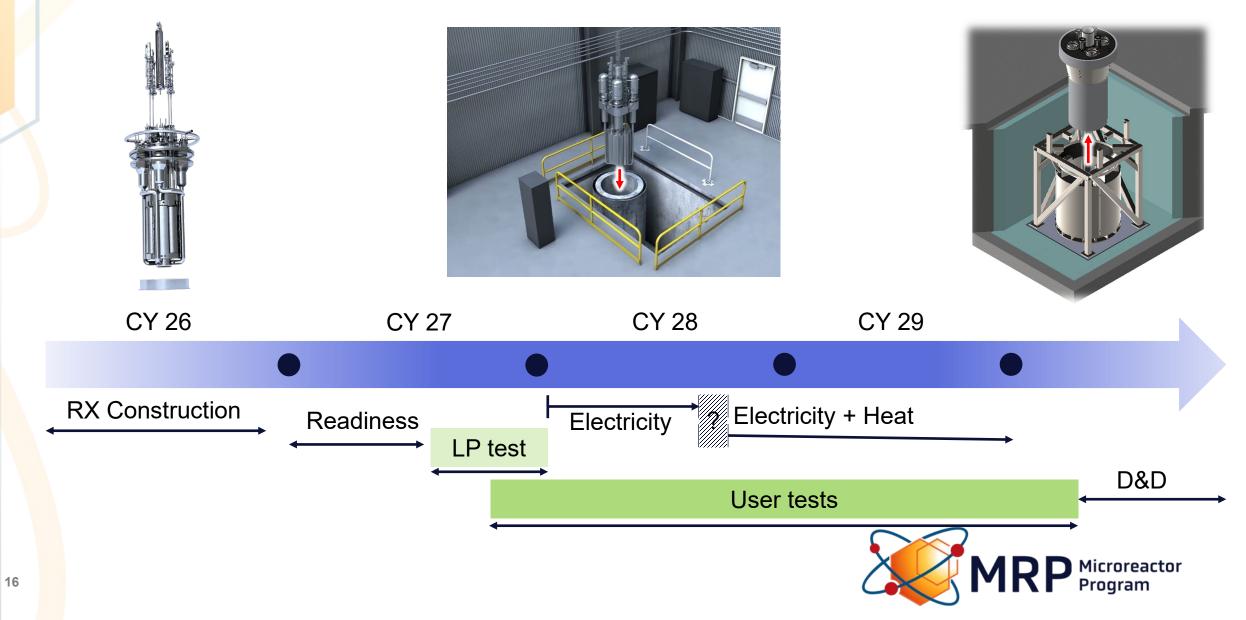

Combinations to Consider

- Working Fluid: NaK, NaK+He
- Interface:
 - Direct heat exchanger
 - Thermal Energy System (TES):
 - Structure: two tank, one tank, solid (Concrete, PBS)
 - Fluid: None, NaK, Salt, LBE
 - Air Radiator: before, after, or none
- **Power conversion**: sCO2, Stirling Engines, Rankine



Fuel Fabrication

- Current Status: Fuel fabrication delayed until end of CY25, following release 10.
- Expected delivery July/August of 2026
- Maintains 6 months + of float to loading fuel.



Conceptual MARVEL Applications

MARVEL HIGH-LEVEL TIMELINE (TENTATIVE)

Ongoing Collaborations with other DOE Programs

Example Use Cases:

- IES: combined nuclear heat & electricity demo
- **DOE-OE**: nuclear microgrid evaluations
- ASI: new sensors & controls demo
- NEAMS: software V&V
- ARSS: nuclear cybersecurity assessments
- AMMT: in-service operation of 3-D printing components
- SA&I: leveraging MARVEL cost data

AMMT Program: 3Dprinted liner for MARVEL

ASI Program: COMMAND

control system deployed on

MRP's MACS platform in

MARVEL configuration

MACS

SA&I Program: Economics of microreactor mass production

How to Engage? Some Suggestions...

Timeline | Engagement

- When do you need to perform these tests?
 - ~CY27 Q3: Startup testing & benchmarks
 - ~CY28 Q1: Microgrid applications
 - ~CY28 Q3: I&C and HMI
 - ~CY28 Q4 & beyond: Heat applications

Funding Opportunities

- Private Sector
 - Subcontract: CRADA, SPP
 - GAIN vouchers (apply in 2026!)
- National Labs
 - DOE-sponsored programs
 - Lab Directed Research and Development (LDRDs)
- University
 - NEUPs on harvesting/processing data?
 - IRPs on hardware testing?
 - Submit in 2025 CINR call!
- Future: MARVEL FEEED Study?

Report:

A. Abou-Jaoude, M. W. Patterson, "MARVEL Utilization Plan", Idaho National Laboratory, INL/RPT-24-78261, June 2024, <u>https://www.osti.gov/biblio/2371533</u>

Fill out the pre-engagement questionnaire

Questions?

Abdalla.aboujaoude@inl.gov

Option 1 for alternative cooling

- He pressure: 20 barg (Aerzen model GM-HP compressor not suitable for p > 25 barg)
- He loop mass flow: 0.0583 kg/s
- Natural circulation in the LBE pool
- Constrains: **keep core outlet temperature ~ 530 °C** (safety limit from ULOF, could be revised upward..)

Parameters	Primary (NaK)	Secondary (NaK)	Tertiary (He)	Pool (LBE)
Maximum temperature, °C	529	454	425	371
Minimum temperature, °C	472	421	381	322
ΔT	57	33	44	49
T average	500	437	403	346
Reactor power, kW _{th}	65.0			
Thermal power removed by Stirling engines, $\mathrm{kW}_{\mathrm{th}}$	52.3			
Electric power produced, kW_e	~8.9			

Reference case

Option 2 for alternative cooling

- Reference case run for secondary NaK mass flow: 0.6 kg/s
- Natural circulation in the LBE pool

Constrains: **keep core outlet temperature ~ 530 °C** (safety limit from ULOF, could be revised upward..)

Reference case

Parameters	Primary (NaK)	Secondary (NaK)	Pool (LBE)	
Maximum temperature, °C	523	438	403	
Minimum temperature, °C	462	407	350	
ΔT	61	31	53	
T average	492	422	376	
Reactor power, kW _{th}	73.0			
Thermal power removed by Stirling engines, $\mathrm{kW}_{\mathrm{th}}$	65.7			
Electric power produced, kW _e	~11.2			

MARVEL Special Issue in Nuclear Technology Journal

- 1. Foreword: Special issue on the MARVEL Project (<u>carlo.parisi@inl.gov</u>)
- 2. MARVEL project: Mission and system description (john.jackson@inl.gov)
- 3. MARVEL Planned Applications (justin.johnson@inl.gov)
- 4. Analysis of hydrogen migration, dissociation, and release behavior in UZrH fuel rods in the MARVEL reactor using the BISON fuel performance code (ryan.sweet@inl.gov).
- 5. Thermomechanical evaluation of UZrH fuel behavior under transient and non-uniform operating conditions in the MARVELreactor(<u>ryan.sweet@inl.gov</u>).
- 6. MARVEL core neutronic design and modeling (travis.lange@inl.gov)
- 7. MARVEL system thermal-hydraulic design and modeling (carlo.parisi@inl.gov)
- 8. CFD and thermo-mechanical Modeling and Simulation of Sodium-Potassium-Cooled MARVEL Microreactor Core (sujongyoon@gmail.com, carlo.parisi@inl.gov)
- 9. Large Eddy Simulation of Low Reynolds Number Turbulent Flow of Low Prandtl Number Fluid in a Tight Lattice Bundle for Assessment of Reynolds-Averaged Navier Stoke Turbulence Model (<u>sujongyoon@gmail.com</u>, <u>carlo.parisi@inl.gov</u>)
- 10. Structural design and modeling of MARVEL Primary Coolant System using ASME Sec. III Div. 5 code (messner@anl.gov)
- 11. MARVEL Safety analysis strategy and main results (doug.gerstner@inl.gov)
- 12. MARVEL Instrumentation, Control, & Software Considerations (<u>Andrew.Heim@inl.gov</u>)
- 13. Marvel Reactor Control System design (anthony.crawford@inl.gov)
- 14. PCAT (Primary Coolant Apparatus Test) design (carlo.parisi@inl.gov)
- 15. PCAT first test results (? Pending ?)
- 16. MARVEL Authorization process (doug.gerstner@inl.gov)
- 17. MARVEL Microreactor economics (Abdalla.AbouJaoude@inl.gov)

