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Overview of Liquid-Fuel Molten Salt Reactor (MSR) Key 
Technologies and Concepts
• Illustrative examples of diverse technologies and configurations intended 

to support normal operations and accident mitigation

• Conceptual differences from solid-fuel reactors

• MSR technologies and challenges
– Proliferation resistance
– Tritium
– Reactor physics simulation
– Fission gas management
– Operations in high dose environment

• Technical maturity and remaining issues
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Diverse MSR Configurations Substantially Complicates 
Classification – Many Variants Being Pursued
• Normal operations heat transfer from the fuel can occur in the core, in-

vessel (ex-core), or in an external heat exchanger
– In-core heat transfer can be from solid fuel, stationary liquid fuel, or moving liquid fuel 
– Ex-vessel heat transfer may be within a secondary (non fuel salt contacting) vessel 

that encloses both the reactor and heat exchanger
• Different layers credited to perform containment under different scenarios

• Decay heat rejection configurations are also diverse
– Fuel salt cooling may be within reactor vessel or dedicated tanks

• May employ freeze valve to enable gravity draining
• May employ active refilling of reactor vessel under normal operation from a continuously 

drained system
• May employ accumulator driven fuel salt transfer against gravity

– Both in- and ex-vessel cooling may be primarily radiative (RVACs), convective 
(DRACS), or conductive (heat pipes or immersion into large coolant pool)
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Reactor Operating Parameter Comparison
MSBR –

Single Fluid MSFR AP1000 S-PRISM IMSR® Mk1PB-FHR

Inlet 
temperature
(°C)

566 675 280 363 625–660 600

Outlet 
temperature
(°C)

705 775 322 510 670–700 700

Primary 
coolant
flowrate (kg/s)

11,820 18,920 14,300 2,992 5,400 976

Thermal power 
(MW) 2,250 3,000 3,400 1,000 400 236

Core power 
density 
(MW/m3)

22.2 330 110 120 9–14 22.7

Reactor 
pressure (MPa) ~0.1

(cover gas)

~0.1
(cover 
gas)

15.5
(pressurizer)

~0.1
(cover gas)

~0.1 
(cover gas)

~0.1 (cover 
gas)

Core structure 
volume (%) 63–87 0 ~50 ~63 70–95
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MSR Plant Layouts Will Be Distinctive (1)
• Outermost containment layer primarily provides radiation barrier and external event shielding, not high pressure 

retention
– MSR containments will not include large volumes of phase change materials (e.g., water) that could pressurize 

containment under accident conditions
– Fuel/coolant salt mixture does not benefit from shielding provided by separate coolant surrounding solid fuel

• Design option to separate radiation shielding from radionuclide containment function

• Fuel and flush salt storage tanks and transfer systems by necessity will be within containment to enable 
maintenance

– Some designs replace the vessel and fuel salt as a whole and are not designed for fuel system maintenance

• All fuel salt system maintenance performed remotely using long-handled tools guided by extremely radiation-
hardened vision systems

• Extensive cover gas processing system and fission gas retention beds will be required
– For aggressively sparged systems significant safety-grade decay heat removal from cover gas will be required
– Trace fissile material accumulation could eventually become significant (inadvertent criticality potential)
– Largest quantity of mobile radionuclides are in cover gas
– Gas line plugging from salt vapor condensation could allow system pressurization
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MSR Plant Layouts Will Be Distinctive (2)

• Passive decay heat removal - key feature of all proposed MSR designs
– Some designs employ more than one technology [e.g., fuel salt cooled by Direct 

Reactor Auxiliary Cooling System (DRACS) and fission gas tanks cooled by Reactor 
Vessel Auxiliary Cooling System (RVACS) type loops]

– Salt dump tanks, as envisioned for the MSBR, are employed in some designs with 
fission gases typically used to preheat dump tanks to minimize thermal shock

– Current designs do not rely upon transferring decay heat through the power cycle 
loop

– Major design goal is to reduce safety significance (i.e., lower safety class) of the 
primary coolant loop [enables use of conventional piping materials and components 
(rupture disks, bellows, etc.)]

• Salt storage tanks will also require thermal management
– Flush salt unlikely to contain sufficient radionuclide quantities to self heat
– Flush salt radionuclide burden: mostly flushed fission products
– Actinide loading largely unknown
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MSR Plant Layouts Will Be Distinctive (3)
• Primary coolant salt will activate, necessitating shielding and possibly draining for nearby 

maintenance activities

• Short half-life fission gas decay systems
– Heat load depends substantially on fission gas (including noble gases) removal strategy
– Multiple design options remain under consideration

• Longer half-life gaseous fission products will be trapped on series of charcoal beds or 
scrubber system
– Fine particulate filters employed to prevent salt egress
– Safety significance of boundaries decreases as activity decreases

• Fuel salt storage systems
– Bred fuel – requires both thermal and criticality management
– Used cores – several designs replace reactor vessel as a whole

• Fuel salt polishing systems
– Particulate filtering – primarily noble metal fission products
– Redox condition adjustment
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MSRs Can Transfer Heat From Fuel Salt In-Core, In-Vessel, 
or Ex-Vessel

• In-core
– Fuel salt in rods or tubes
– Similar to solid fuel reactors with unfueled coolant
– Coolant can be salt of liquid metal

• In-vessel
– Integral primary system reactor avoids potential for ex-vessel fuel leaks
– Requires in-vessel fuel salt pumps

• Ex-vessel
– Loop type reactor
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Core of Thermal Spectrum MSRs is Largely Graphite with Fuel Salt 
Channels

• Fast fluence graphite damage is key 
design issue in setting core power 
density

– Increased salt penetration into radiation 
damaged graphite is key lifetime metric 

• Current designs employ interior 
moderation/shielding to minimize 
neutron fluence (embrittlement) of 
reactor vessel

• Most current designs employ integral 
primary system layout

MSRE Vessel 
and Core

– Taller vessel to promote in-vessel natural circulation based 
decay heat removal alternatives to dump tanks

• Lower power density enables in-core control elements 
(typically in thimbles)
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Fast Spectrum MSRs May Have Open Core or Tube Type Designs
• Open cores have little or no structural material in core

– Protecting reactor vessel from radiation damage is key lifetime 
parameter – internal reflectors, shielding, or fertile material layer

• Pin or tube fuel and coolant/reflector configurations are similar to 
solid-fuel fast reactors

– Fuel salt flow (including in-pin recirculation) reduces cladding and 
fuel salt temperature

– Cladding / tube radiation damage becomes key lifetime parameter

• Core size/geometry is dictated by lower fast spectrum fission 
cross sections

– Designs tend to be gigawatt (+) scale

• Fuel salt wetted materials are not a life-of-plant components

• In-core control elements unlikely
– Reflector geometry change possible

– Shutdown elements possible (fuel salt displacement)
– Europeans proposing to employ helium injection as control 

mechanism

– Pump speed likely to be principal, normal operation control 
mechanism

European Fast 
Spectrum MSR

TerraPower’s 
Molten Chloride 
Fast Reactor

Source: IAEA ARIS

Image courtesy of TerraPower
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Conceptual Differences for MSRs with Liquid Salt Fuel
• Low intrinsic fuel-salt pressure decreases radionuclide release probability and magnitude

– Higher coolant salt pressure vs. fuel salt pressure means that primary heat exchanger leaks would be into the fuel salt 

• Delayed neutron precursors are mobile
– Mobile fission gas bubbles also impact reactivity

• Fission products are not all in fuel salt
– May require cooling of decay heat in additional locations (e.g., fission gas decay tanks)
– Fewer radionuclides remain to be released in fuel/core accidents
– Potential for fissile material to be transported with fission products

• Some fission products form stable, low volatility salts (e.g., cesium and strontium)
– 137Xe (𝚝𝚝½ ≈ 3.82 min) decays to 137Cs and has low solubility 

• High temperature and large salt coefficient of thermal expansion (i.e., density changes) facilitate passive 
decay heat removal options 

– Higher radiative heat transfer improves RVACS performance
– Strong natural circulation facilitates DRACS performance
– Potential for overcooling accidents

• Online refueling minimizes excess reactivity available
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Conceptual Differences for MSRs with Liquid Salt Fuel 
(cont’d)
• Fuel composition and chemistry can be continuously adjusted

– Fuel specification will be based on maintaining composition within an acceptable boundaries based on physical and 
chemical properties of fuel salt

– Enables maintaining chemical compatibility with container alloy

• Area surrounding fuel salt will have very high radiation flux
– Draining and flushing fuel salt required for significant maintenance
– Solid state electronics would only be possible with substantial shielding

• Core first wall will be subjected to significantly increased neutron fluence
– Radiation embrittlement and swelling will likely be the first wall limiting phenomena
– Creep & creep-fatigue will likely remain dominant issues for non-first wall materials
– Interior vessel shielding (neutron reflectors and/or absorbers) commonly employed
– All major components (including vessel) are intended for replacement

• Achievable power density is not set by departure from nucleate boiling
– No cliff-edge phenomena or energetic reactions which liberate radionuclides
– Limit arises from heat exchanger performance (flow-accelerated corrosion, tube vibration, etc.)

• Fissile material accountability goes well beyond “item counting”
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Proliferation Resistance Has Become a Dominant 
Concern for All Fuel Cycles
• MSRs can have better or worse proliferation resistance depending on the plant design

– MSR designs until the mid-1970s did not consider proliferation issues
– Several current MSR design variants do not include separation of actinide materials
– Actinide co-separation may result in low attractiveness material

• Liquid fuel changes the barriers to materials diversion
– Lack of discrete fuel elements combined with continuous transmutation prevents simple 

accounting
– Homogenized fuel results in an undesirable isotopic ratio a few months following initial startup 

(no short cycling)
– Extreme radiation environment near fuel makes changes to plant configuration necessary for 

fuel diversion very difficult
– High salt melting temperature makes ad hoc salt removal technically difficult
– Low excess reactivity prevents covert fuel diversion

• Fresh LEU fuel prior to dissolution in fuel circuit is a potential target



1414

Thermal Spectrum Th/U Breeding Fuel Cycle Presents 
Distinctive Proliferation Issues
• 232Th is not fissile

• A conversion ratio greater than one is only 
possible if 233Pa is allowed to decay in a low 
thermal flux environment
– 233Pa has a significant thermal neutron absorption 

cross-section
– 234U is not fissile

• Liquid fuel MSRs can be designed to separate 233Pa resulting in a separated fissile 
stream

• Maximizing the Th/U breeding ratio was a significant element of the historic US MSR 
program prior to the mid-1970s

– Program focus was on minimizing the amount of the non-renewable resource 235U required

• US does not have a definition of LEU for uranium isotopes other than 235U and 238U
– Necessary to enable blended Th/U and U/Pu fuel cycles

Typical thermal spectrum 
branching ratios
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Denatured MSRs Were Designed in 1970s to Reduce 
Proliferation Vulnerability
• Online processing is not performed (other than gaseous fission product 

removal and noble metal filtering)

• LEU for startup and as feed material
– Conversion ratio < 1 (0.8–0.9 typically)
– 238U added as needed to maintain denatured state
– Thorium only in initial loading

• ORNL 1970s design lowered power density to extend graphite lifetime

• Commercial firms are pursuing DMSR designs
– Higher power density
– Integral primary system
– Replace entire reactor vessel with fuel every 3–10 years

• Fuel salt chemistry has advanced substantially since 1970s
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Fast Spectrum MSRs May Achieve Net 
Breeding without Actinide Separation
• Neutron absorption of fission products is dominated by thermal 

neutrons

• FS MSRs have very few thermal neutrons
– Thorium can be used without protactinium separation

• Neutron yield per fission increases substantially with incident 
neutron energy

– Hardening neutron spectrum key design objective

Images from ORNL/TM-2011/105
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European Union and Russian Federation Are 
Examining Fast Spectrum Fluoride Salt MSRs

EU MSFR includes both fertile and 
fissile salts in single fluid

• LiF-ThF4-UF4-(TRU)F3 with 77.7-6.7-12.3-3.3 mol% 
• U enriched at 13%
• Melting point = 594°C

Russian MOSART can be 
configured as a burner or 
breeder

System Burner         /    Breeder
Fluid streams 1 2

Power capacity, MWt 2400 2400

Fuel salt inlet/outlet 
temperature, oC

600 / 720 600 / 720

Fuel salt
composition, mol%

72LiF       
27BeF2       
1TRUF3

75LiF
16.5BeF2

6ThF4
2.5TRUF3

Blanket salt 
composition, mol% No

75LiF      
5BeF2

20ThF4

MSFR Core Cross-Section

Both designs employ on-site 
fissile material separations

Image courtesy Reactor Physics Group LPSC Grenoble and IPN Orsay; IAEA ARIS
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First Generation of MSRs Plan to Rely upon Known 
Component Technology
• Pumps

– Vertical shaft, cantilever style similar to those used at sodium fast reactors
– May require pressurization of fuel system to avoid pump cavitation
– Could be coupled with spray ring to evolve fission gases and tritium

• Heat exchangers
– Tube and shell remains leading candidate technology
– Tube vibration and flow-accelerated corrosion appear to be the most significant power density 

limits
– Double wall possible for tritium release mitigation

• Vessel
– Either ASME BPVC code qualified material with redox control, or
– Modified Alloy N used under a limited term code case
– Interior shielding to minimize radiation damage is planned by multiple vendors
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Salt Chemistry Is Central to MSR Performance
• All alkali halide salts can be highly corrosive

– Maintaining mildly reducing conditions key to avoiding 
significant alloy corrosion

– Graphite attacked under strongly reducing conditions
– Presence of electronegative impurities (e.g., S2- or O2-) is 

especially pernicious 
– U4+/U3+ serves as a circulating redox buffer
– Tellurium cracking was largely alleviated by maintaining 

proper redox conditions
• Fast spectrum fluoride salt reactors operate near solubility limits for actinide trifluorides 

to maintain criticality
– Chloride salts dissolve significantly larger amounts of actinides 

• Fission product distribution is substantially impacted by salt chemistry
– Important fission products form stable halide salts
– Volatile, low-solubility compounds may also be formed (e.g., CsI)
– Chloride salt fission product distribution has never been demonstrated under in-pile 

conditions
– Noble and semi-noble (more soluble) fission product distribution has substantial uncertainty

Source: ORNL/TM-6413
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Replacement Strategy Significantly Alters Structural 
Materials Requirements
• All salt-wetted components are intended for periodic replacement

– Key issue is ability to assess remaining useful life

• ASME BPVC is centered around establishing initial fitness for duty with limited 
accommodation (high temperatures) for in-service degradation
– Corrosion and neutron induced reduction in fracture toughness are key boundary degradation 

mechanisms
– Interior shielding frequently employed in modern designs to minimize fluence on reactor vessel

• MSRE was approaching end of allowable service life when shut down
– Establishing appropriate in-service inspections will be key for situations approaching material 

limits
• Material coupons
• Salt composition monitoring for presence of structural alloy elements (e.g., iron, chromium)

• Fuel-salt-wetted components will be both significantly activated and have fission 
products deposited onto their surfaces
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Liquid Fuel Reactors Require Updating Reactor Physics 
Simulation Tools
• Mobile delayed neutron precursors decrease stability margin

– Time constants for feedback mechanisms are key
• Doppler feedback is prompt
• Fuel expansion out of critical configuration occurs at speed of sound

• Maximum hypothetical accident approach has been employed to bound the modeling 
uncertainties

• Fission product bubble formation and collapse cause reactivity burps
– No significant radiolytic salt decomposition in fluorides or anticipated in chlorides

• Startup of decay heat removal mechanisms
– No cliff-edge threshold phenomena
– High power density reactors could experience unacceptable transient heating

• Cross-section uncertainty will impact fuel cycle modeling
– Potential significant issue for fissile materials tracking
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Gaseous Fission Products Inherently Evolve from Fuel Salt
• Inert gas sparging and/or fuel salt spraying into an inert gas environment 

enhances rate of removal

• Evolved fission products (FPs) represent a significant heat load

• Many FPs have Xe or Kr precursors
– Over 40% of FPs leave core
– Large fraction of cesium, strontium and iodine end up in offgas

• For 1000 MWe MSR
– 2 h in drain tank ~20 MW
– 137Cs almost all in drain tanks or gas decay tanks
– Then 47 h delay charcoal beds ~2 MW
– 90 day long term beds ~0.25 MW
– 23 m3 of 85Kr (𝚝𝚝½ ≈ 10.8 y) a year
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Tritium Management Is a Key Element to Lithium Fluoride 
Salt MSRs
• Lithium isotope separation: enabling technology for lithium-bearing fuel salts (avoid 6Li)

– Industrially produced for weapons program in 1950s using mercury amalgam process
– Substantial modern technology improvements, but no industrial scale demonstration

• Fluoride salt MSRs with lithium-bearing salts generate ~1 Ci tritium / MWt /day

• Above 300°C tritium readily permeates available structural alloys

• Significant advancement in technology for tritium separation from molten salts since 
1970s
– Designing and demonstrating 

tritium separators are key 
elements of DOE’s solid fuel MSR 
program at both universities and 
national laboratories

– Multiple options for tritium 
isolation under consideration
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Physics of MSR Accident Progression Is Substantially 
Different than for LWRs
• Foundation of existing licensing framework is averting core damage and 

preventing large radionuclide releases
– Low-pressure, liquid-fueled systems lack analogous accidents
– Early release of fission gases has large potential consequences

• Safety design requirements need to build from basic phenomena (i.e., 
quantitative health objectives)
– Preventing release of radionuclides to the environment remains the central safety 

metric
– Relies upon validated accident progression models

• LOCA consequences are significantly different than LWR
– Low driving pressure and lack of phase change fluids
– Guard vessels employed on some designs
– Planned vessel drain down to cooled, criticality-safe drain tanks on some designs
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MSR Characteristics Alter the Risk Significance of the SSCs

• Reduced core source term 

• Increased fission gas decay tank source term

• Active systems may not be necessary to perform protection and 
mitigation functions
– Capability of bringing the reactor subcritical and decay heat removal will be fully 

passive and cannot be disabled by control system actions
– MSRs lack heat transfer or temperature threshold phenomena (e.g., DNB)
– Reduced safety significance of active components and I&C

• Requires a plant-specific PRA, supplemented by an expert panel, and 
validated accident evaluation capabilities to employ 
10 CFR 50.69 for classification
– New ANS standard and categorization and classification of SSCs will be an important 

element of MSR design
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Technology Challenges Remain for 
MSRs
• Operations and maintenance are much more difficult in an extreme 

radiation environment
• Nickel-based alloys embrittle under high neutron fluxes at high temperature

– Refractory, embrittlement-resistant alloys and structural ceramic composites 
remain at low technology readiness

• High power density reactors challenge heat exchanger material 
mechanical performance, reflector/shield material temperatures, and 
startup of passive decay heat removal systems

• Proper chemistry control is imperative
– Alkali halide salts can be highly corrosive
– Ratio of U4+/U3+ is key to maintaining low corrosivity

• Fluoride salts generate substantial amounts of tritium
– Especially lithium-bearing salts

• Fast spectrum fluoride salt reactors operate near solubility limits for actinide 
trifluorides to maintain criticality

• No operational experience with chloride salts 

MSRE maintenance 
used long shafted tools

102 creep test specimens of 
Nb-modified Alloy N prior to 

reactor insertion 
ORNL-5132
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MSR Technology Maturity Varies Substantially with 
Reactor Type
• Basic elements of MSRs have been identified and demonstrated with 

varying degrees of sophistication

• Thermal spectrum fluoride salt-based systems benefit greatly from the 
earlier MSBR development program, including operation of the MSRE
– Principal technical challenges identified in 1972 by independent expert reviewers 

addressed (WASH-1222)
– Principal remaining technical issues are in commercial viability and system scaling

• Chloride salt-based reactors have significant additional fuel salt in-core 
performance unknowns that remain to be resolved
– Undesirable fissile material solid phase formation?
– Radiolytic instability?
– Significant increases in evaporation rate?
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