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. Motivation for species tracking in
MSRs

. Development of a computational
framework for species tracking

. FY24 scope: coupled transport of
soluble + gaseous species

. Application example to Molten Salt
Reactor Experiment
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Species Tacking Behavior in MSRs

Insoluble Particle Deposition
on Liquid-Solid Interfaces
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Insoluble Particle Deposition
on Liquid-Gas Interfaces

Insoluble Particle Deposition\
on Gas Bubble Interfaces

Insoluble Particle Precipitation
due to Redox Reaction
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Soluble Particle Generaton S ————————— -7
Due to Corrosion
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Why do we need to track species?

 Importance of Species Tracking

« Containment: Where do the radionuclides go? What is the
reactor source term?

* Heat removal: Where do isotopes plate out? How do we cool
the reactor?

: Where do the neutron precursors go? What is the
reactor S

« Corrosion: How do fission products interact with the wall”? How
long will a barrier last?

» Safeguards: Where do the fissile isotopes go? How do we
monitor where they are?
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Main NEAMS tools used for

modeling and simulation of MSRs
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Coupling framework for species tracking

1

2.

The coupling framework for
species tracking in MSRs
Involves:

. Griffin: neutronics +

depletion
Pronghorn: thermal-
hydraulics + species
transport

Thermochimica: chemical
equilibrium calculations

Power
Distribution
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Vapor
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FY23 work: framework coupling for evaluating soluble fission
oroduct retention

Removal | '37Xe — Core 137Xe — OG | Percentage
rates [atoms/(b-cm)] | [atoms/(b-cm)] in OG

RN 2.202e-11 7.280e-10 97.06%
DR 1.742e-10 5.758e-10 76.77%
| 7 =0.001 | O 001 5.637e-10 1.863e-10 24.84%

137Cs — Core 137Cs — OG | Percentage
[atoms/(b-cm)] | [atoms/(b-cm)] in OG
r =0.10 2.391e-07 2.279e-06 90.50%

| r=10.10 |
7101607  1.802e:06  71.73%
| =0.001 |

r =0.001 1.904e-06 5.830e-07 23.44%

« Speciation and mass balances affects by the
evolution of 3D chemical potential

* It is key to consider multi-D fields (temperature,
pressure, composition, etc.) in MSRs

Figure 6-2. Fluoride (F-) potential (J/mol) at (clockwise, from upper left) 0.024, 0.048, 0.096, and b We n eed tO bette r aCCO U nt fO r th e tra n S pO rt Of
0.239 MWd/Kg-U, showcasing the oxidizing effect of depletion on MSFR fuel salt. -
gaseous species
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FY24: Coupled transport of soluble + gaseous species

. Fuel Salt

Bubbles

Isotopes of kind i

|sotopes of kind j
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Isotopes of kind k
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Application to MSRE

/_\ Gas

Heat Removal

Sink

* Model application to 2D axisymmetric
model of Molten Salt Reactor Experiment
(MSRE)

 Pump above riser circulates the fuel salt
 Fission power is produced at the center

Core—

Lower Plenum-Jji} .

. Top Plenum—.g
of the core with a total power of 10MW DgwncBome:%
* A heat sink simulating the heat -

Pump-
Return Piping—

exchanger is placed at the pump location

 All gases are extracted with an assumed
100% efficiency at the top boundary

Example: Molten Salt Reactor Experiment Axisymmetric Model
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MSRE - Steady-State Operation
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Void Distribution

* Void increases as the fuel circulate
through the reactor core

* As flow mixes in the upper plenum two
different behaviors are observed: 5 G

* Flow jets to the riser, where void is removed
at the pump

* Flows is more occluded towards the
external radius of the upper plenum, .
resulting on a higher void concentration i,

* Interface area concentration and hence,
liguid-gas exchange processes are
larger at the top of the core and the
partially occluded flow in the outer
radius of the upper plenum

— 2.3e03
— 0.002

0.8
0.0015

0.6

—04 0.001

Void Fraction

0.0005

S
Interface Area Concentration [m%/m?]

4.0e-06

Example: Steady-State void distribution
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Demonstration problem

- Tracking the depletion chain of °*Br

t1/2 0.543s t1/2 = 8.57s t1/2 = 58.2s t1/2 = 9.65h 01 t1/2 = 58.51d ‘91
Fission: Fission: Fission: Fission: Fission: Fission:
y = 6.3954F — 4 y =1.178E — 2 y = 2.93761E — 2 y =9.669884F —3  y = 1.88654e — 4 y =1.68E — 6
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Species Tracking: Steady-State Simulation Results 1/3

« 1B is produced by fission
and stays in solution in the
fuel salt

» No gaseous “'Br is present

— 1.0e-15 — 5.2e-04

— 3.1e02

« K7 is produced by fission el
and by natural decay of *'Br o, g
in the fuel salt o6

0025 = 0.0004

002 00003 O
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« Some ?'Kr converts into the
gas phase, where is
transported toward the
extraction point at the top of
the reactor core
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Species Tracking: Steady-State Simulation Results 2/3

« ?1Rb is produced by fission
and by the decay of **Kr in
the fuel salt

« Also, °*Rb is produced by the
decay of °*Kr in the gas
phase
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* A similar behavior is observed
for °1sr
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Species Tracking: Steady-State Simulation Resuits 3/3

- 91y is produced by fission and
by the decay of *'Sr in the fuel
salt

* There is no direct exchange
between the liquid and the gas
phase for 1y

« Also, °'Y is produced by the
decay of *1Sr in the gas phase

* A similar behavior is observed
for °1zr
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MSRE - Reactivity Insertion Transient

* 100 pcms are injected
in the reactor core at
the initial time

« During a reactor — 606406 o B ot
transient, the —5et6 [
distribution of void oo 2 [%0 v o
plays a fundamental 016 ; - o B
role in power g ~930 & lo.Q 5
attenuation lers & [920 [0,] oo~
. Additionally, the ooz M26002
distribution of void is
important in the reactor
setpoint after the
transient
Time: 0.000000 Time: 0.000000
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Evolution of species during reactivity insertion transient
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Experimental Testing

* Modeling Texas A&M experiment for Ar bubbles injected into natural-convection-driven FLiNaK loop
« Goal is determining the accuracy of out model in capturing Ar distribution throughout the loop
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Conclusions and Future Work

* Key conclusions:

* New framework for coupled soluble + gaseous species tracking has been
implemented using NEAMS tools

 The model has been implemented for MSRE and shows the importance
of modeling transients for accurate species tracking

* Ongoing work:

 Validation of model results against MSRE composition measurements in
salt samples and offgas system

* However, this data is limited. We are seeking further experiment
collaboration for model validation

Email: Mauricio.TanoRetamales@inl.qov
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