

Molten Salt Reactor P R O G R A M

Species Tracking in Molten Salt Reactors

Mauricio Tano, Samuel Walker, Abdalla Abou-Jaoude

Annual MSR Campaign Review Meeting 16-18 April 2024

Content

- 1. Motivation for species tracking in MSRs
- 2. Development of a computational framework for species tracking
- 3. FY24 scope: coupled transport of soluble + gaseous species
- 4. Application example to Molten Salt Reactor Experiment

Species Tacking Behavior in MSRs

Why do we need to track species?

- Importance of Species Tracking
 - Containment: Where do the radionuclides go? What is the reactor source term?
 - Heat removal: Where do isotopes plate out? How do we cool the reactor?
 - **Reactivity**: Where do the neutron precursors go? What is the reactor β_{eff} ?
 - Corrosion: How do fission products interact with the wall? How long will a barrier last?
 - Safeguards: Where do the fissile isotopes go? How do we monitor where they are?

Main NEAMS tools used for modeling and simulation of MSRs

5

Coupling framework for species tracking

- The coupling framework for species tracking in MSRs involves:
- 1. Griffin: neutronics + depletion
- 2. Pronghorn: thermalhydraulics + species transport
- 3. Thermochimica: chemical equilibrium calculations

FY23 work: framework coupling for evaluating soluble fission product retention

Figure 6-2. Fluoride (F-) potential (J/mol) at (clockwise, from upper left) 0.024, 0.048, 0.096, and 0.239 MWd/Kg-U, showcasing the oxidizing effect of depletion on MSFR fuel salt.

Removal rates	¹³⁷ Xe – Core [atoms/(b-cm)]	¹³⁷ Xe – OG [atoms/(b-cm)]	Percentage in OG
r = 0.10	2.202e-11	7.280e-10	97.06%
r = 0.01	1.742e-10	5.758e-10	76.77%
r = 0.001	5.637e-10	1.863e-10	24.84%
	¹³⁷ Cs – Core	¹³⁷ Cs – OG	Percentage
	[atoms/(b-cm)]	[atoms/(b-cm)]	in OG
<i>r</i> = 0.1 0	2.391e-07	2.279e-06	90.50%
r = 0.01	7.101e-07	1.802e-06	71.73%
r = 0.001	1.904e-06	5.830e-07	23.44%

- Speciation and mass balances affects by the evolution of 3D chemical potential
- It is key to consider multi-D fields (temperature, pressure, composition, etc.) in MSRs
- We need to better account for the transport of gaseous species

FY24: Coupled transport of soluble + gaseous species

Application to MSRE

- Model application to 2D axisymmetric model of Molten Salt Reactor Experiment (MSRE)
- Pump above riser circulates the fuel salt
- Fission power is produced at the center of the core with a total power of 10MW
- A heat sink simulating the heat exchanger is placed at the pump location
- All gases are extracted with an assumed 100% efficiency at the top boundary

Example: Molten Salt Reactor Experiment Axisymmetric Model

MSRE – Steady-State Operation

Impact of void transport modeling

Void Distribution

- Void increases as the fuel circulate through the reactor core
- As flow mixes in the upper plenum two different behaviors are observed:
 - Flow jets to the riser, where void is removed at the pump
 - Flows is more occluded towards the external radius of the upper plenum, resulting on a higher void concentration
- Interface area concentration and hence, liquid-gas exchange processes are larger at the top of the core and the partially occluded flow in the outer radius of the upper plenum

Example: Steady-State void distribution

Demonstration problem

• Tracking the depletion chain of ${}^{91}Br$

Species Tracking: Steady-State Simulation Results 1/3

- ⁹¹Br is produced by fission and stays in solution in the fuel salt
- No gaseous ${}^{91}Br$ is present
- ${}^{91}Kr$ is produced by fission and by natural decay of ${}^{91}Br$ in the fuel salt
- Some ⁹¹*Kr* converts into the gas phase, where is transported toward the extraction point at the top of the reactor core

Species Tracking: Steady-State Simulation Results 2/3

- ⁹¹Rb is produced by fission and by the decay of ⁹¹Kr in the fuel salt
- Also, ${}^{91}Rb$ is produced by the decay of ${}^{91}Kr$ in the gas phase
- A similar behavior is observed for ⁹¹Sr

Species Tracking: Steady-State Simulation Results 3/3

- ⁹¹Y is produced by fission and by the decay of ⁹¹Sr in the fuel salt
- There is no direct exchange between the liquid and the gas phase for ⁹¹Y
- Also, ⁹¹Y is produced by the decay of ⁹¹Sr in the gas phase
- A similar behavior is observed for ${}^{91}Zr$

MSRE – Reactivity Insertion Transient

- 100 pcms are injected in the reactor core at the initial time
- During a reactor transient, the distribution of void plays a fundamental role in power attenuation
- Additionally, the distribution of void is important in the reactor setpoint after the transient

Time: 0.000000

Evolution of species during reactivity insertion transient

Time: 0.000000

Time: 0.000000

Time: 0.000000

Time: 0.000000

Experimental Testing

- Modeling Texas A&M experiment for Ar bubbles injected into natural-convection-driven FLiNaK loop
- Goal is determining the accuracy of out model in capturing Ar distribution throughout the loop

• Key conclusions:

- New framework for coupled soluble + gaseous species tracking has been implemented using NEAMS tools
- The model has been implemented for MSRE and shows the importance of modeling transients for accurate species tracking

• Ongoing work:

- Validation of model results against MSRE composition measurements in salt samples and offgas system
- However, this data is limited. We are seeking further experiment collaboration for model validation

Email: <u>Mauricio.TanoRetamales@inl.gov</u>

Thank you

Your email Address

Office of **NUCLEAR ENERGY**