
INL/MIS-23-72452

Molten Salt Reactor P R O G R A M

MSR Species Tracking Modeling & Simulation

Abdalla Abou-Jaoude, Samuel Walker, Mauricio Tano Idaho National Laboratory

Annual MSR Campaign Review Meeting 2-4 May 2023

PART-I: INL Scope

Multiphysics Depletion and Species Tracking using NEAMS Tools

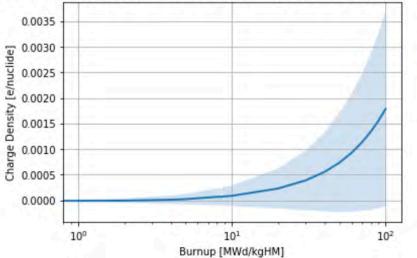
Overview:

- 1. Background
- 2. Updating FY22 0D Depletion + Thermochemistry Model
- 3. 2D/3D Depletion + Advection
- 4. Advection + Thermochemistry
- 5. Progress on Depletion + Advection + Thermochemistry

Why Does it Matter?

• Importance of Species Tracking

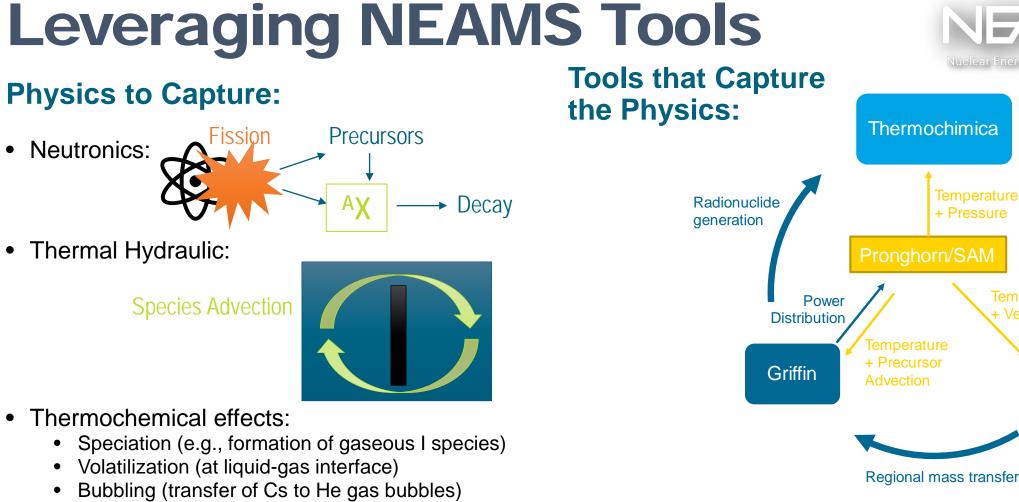
- **Containment**: Where do the radionuclides go? What is the reactor source term?
- Heat removal: Where do isotopes plate out? How do we cool the reactor?
- Reactivity: Where do the neutron precursors go? What is the reactor beta-eff?
- Corrosion: How do fission products interact with the wall? How long will a barrier last?
- Safeguards: Where do the fissile isotopes go? How do we monitor where they are?


Methodology

- Collect data and populate MSTDB → Ongoing
- Develop models that leverage data to estimate, based on reactor design parameters, the behavior of species within an MSR → This work

• Benefits:

- Inform designers on source term, decay heat, controllability, corrosion, and safeguards
- Inform experimentalists of equipment sensitivity & research priorities


Most likeley (±20) accumulated charge density [e/nuclide] for MCRE-like salt

Precipitation (solid U compound phase) .

Temperature

Mole

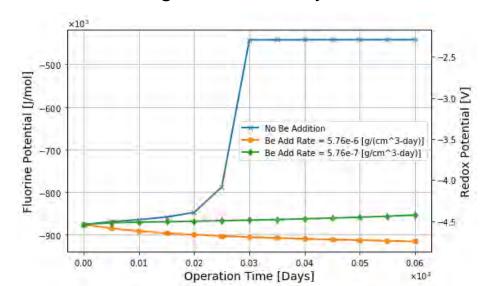
+ Velocity

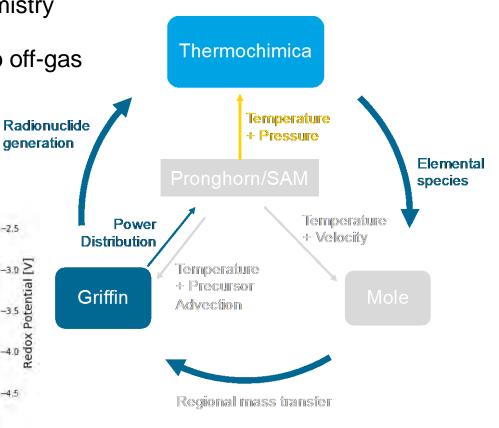
Elemental

species

U.S. DEPARTMENT OF

+ Pressure

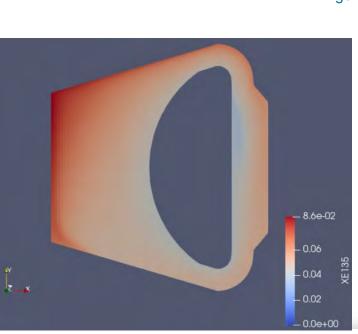

Step 1: Depletion + Thermochemistry

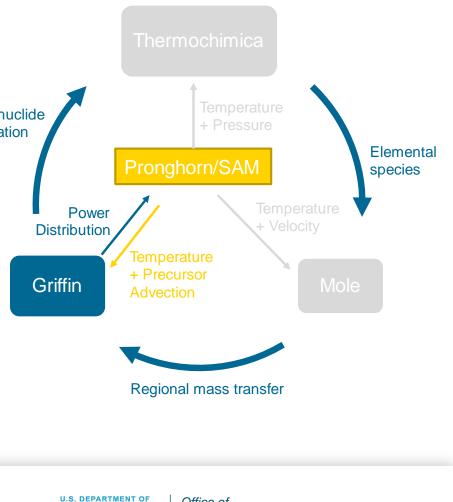

- 0D approximation capturing depletion (Griffin) and thermochemistry (Thermochimica) developed by NEAMS in FY22
- 2-Region CRAM solver to remove volatile species from core to off-gas
- Specify removal rate (provided by other code)
- Updated FY22 analysis using MSTDB-TC v2.0
- Redox control by addition of reducing metals into system

Removal (Yes/No)	¹³¹ I – Core [atoms/b- cm]	¹³¹ I – OG [atoms/b- cm]
No	9.462e-09	0.0
Yes	9.432e-09	5.883e-17
%		
Difference	0.32%	

Publications:

- ICAPP 2023: "Leveraging Coupled Thermochemical Depletion Capabilities to Evaluate Off Gas and Source Term Characterization in Molten Salt Reactor Systems"
- Frontiers Journal (submitted): "Depletion Driven Thermochemistry of Molten Salt Reactors: Method, Analysis, and Impact"

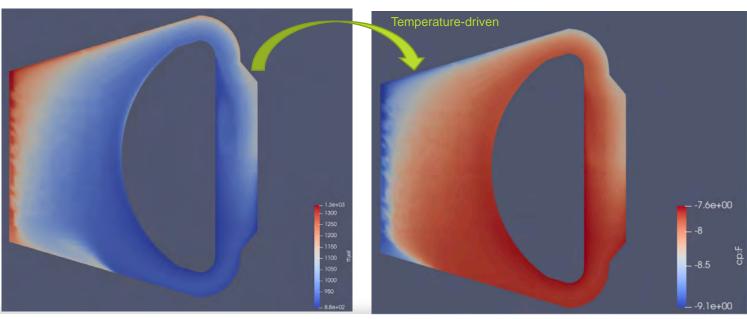

Step 2: Depletion + Advection


- New depletion capability in Griffin developed by NEAMS to account for isotopes born in core but decaying outside
- To make problem tractable: only applies to isotopes that decay not too quickly (stay in core) and not too slowly (well mixed)
- Ignoring this advection effect can lead to substantial errors at specific removal values Radionuclide generation

Removal rates	¹³⁵ Xe – OG [atoms/(b-cm)]	Percent Diff. from 0D Calculation
r = 0.10	1.304e-07	0.77%
r = 0.01	1.251e-07	4.40%
r = 0.001	5.595e-08	20.59%

Publications:

ICAPP 2023: "Spatially Resolved **Depletion Studies of Circulating Fuel** Molten Salt Reactor Systems"

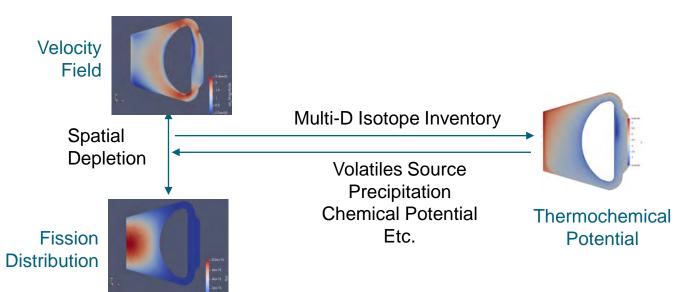


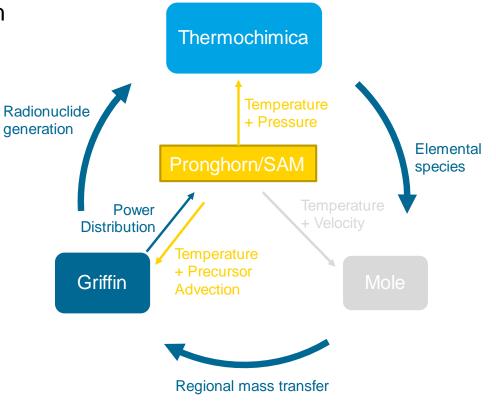
Office of

NUCLEAR ENERGY

Step 3: TH + Thermochemistry

- Accounting for variability in thermochemistry and speciation throughout reactor flow and temperature field (ART-MSR)
- Evaluate chemical potential of species within spatial distribution (temperature-driven)
- Ongoing work: importing species phases (NEAMS)


Temperature of Molten Salt


Chemical Potential of Fluorine

Step 4 (Ongoing) : Depletion + TH + Thermochemistry

- Bringing it all together: deplete isotopes (Griffin), move through salt (Pronghorn), evaluate speciation (Thermochimica)
- First step: evaluate off-gasing of species
- Second step: evaluate precipitation of species
- Missing physics: regional mass transfer (Mole)

Next Steps

- Complete step 4 model
- Leverage to predict 3D resolved off-gasing and precipitation rates of nuclides
- Compare MELCOR against NEAMS \rightarrow SNL collab
- Feed MELCOR correlations → SNL collab

Next FY

- Include Mole into framework \rightarrow ORNL collab
- Improve off-gas and precipitation models with Two-Phase bubbling model
- Incorporate corrosion dynamics
- Establish NEAMS-MELCOR workflow for Accident Transient Analysis

SNL-INL Status:

	Thermal F MSR	Fast CI MSR
INL	 MSRE Griffin model complete Pronghorn model under dev Apply framework once Griffin-Pronghorn model established 	 Reference model already built Framework partially established First use case for comprehensive species tracking capability
SNL	 MELCOR model established Incorporate ORIGEN- based depletion capabilities Obtain vapor pressure correlations from NEAMS 	 Develop CI based equations of state Build reference CI MSR model Obtain vapor pressure correlations from NEAMS

Thank you

Abdalla.aboujaoude@inl.gov

U.S. DEPARTMENT OF Office of NUCLEAR ENERGY