Structural Material

*"OAK

- RIDGE

Powder Metallurgy - Hot Isostatic Pressing of Steels in Support of Microreactors

6 March 2024
Tate Patterson
Welding Engineer, Idaho National Laboratory

Background

- Powder metallurgy hot isostatic pressing (PM-HIP) is a manufacturing method that produces components by consolidating metal powder
- Minimizes additional fabrication steps
- Eliminates solidification structures
- Eliminates directional grain elongation caused by rolling or forging

MTC Powder Solutions

UK - Nuclear Advanced Manufacturing Research Center (UK-NAMRC) System

PM-HIP Adoption for Microreactors

- PM-HIP may benefit structural components for microreactors (i.e., core barrels, primary coolant loops, etc.) by reducing construction time, reducing waste, and improving component availability

Goals

- Demonstrate high temperature mechanical properties of PM-HIP compared to wrought materials for Sec. III Div. 5 structural alloys
- Address PM-HIP 316 stainless steels to support multiple advanced reactors
- Develop specifications and acceptance criteria for PM-HIP components
- Low temperature code case (up to $371^{\circ} \mathrm{C}$)
- High temperature code case ($371^{\circ} \mathrm{C}<\mathrm{T}<816^{\circ} \mathrm{C}$)

PM-HIP Div. 5 Code Case Roadmap

Scoping mechanical testing of PM-HIP alloys for Sec. III, Div. 5 qualification	Review results of scoping study	Scoping results are promising Scoping study results are not promising	Identify PM-HIP alloys to be qualified in Sec. III, Div. 5	Generate data for ASTM PM-HIP material specification development and ASME BPVC Section III, Div. 5 qualification
Sources of Data INL, UKNAMRC Potential alloys: 316H, Alloy 800H, Alloy 617, Gr 91, Alloy 709	Task Group on Div. 5 AM Components		Task Group on Div. 5 AM Components	Responsible Party TBD

PM-HIP Div. 5 Code Case Roadmap

Materials - 316 SS

Powder Compositions (wt\%)												
	C	Ni	Cr	Mo	Ti	AI	Si	Mn	S	P	N	0
$\begin{gathered} \text { 316H } \\ \text { Billet } \mathbf{1}^{11} \end{gathered}$	0.055	11.8	16.3	2.51	0.01	0.01	0.18	0.22	0.01	0.003	0.140	0.0167*
$\begin{gathered} 316 \mathrm{H} \\ \text { UK-NAMRC² } \end{gathered}$	0.05	11.9	17.1	2.52	<0.01	0.01	0.17	0.18	0.002	0.004	0.076	0.0093*
$\begin{gathered} 316 \mathrm{~L} \\ \text { UK-NAMRC² } \end{gathered}$	0.015	11.9	17.7	2.44	0.003	0.006	0.83	1.88	0.008	0.008	0.060	0.0117**

Consolidated Product Chemical Compositions (wt\%)												
	C	Ni	Cr	Mo	Ti	AI	Si	Mn	S	P	N	0
$\begin{gathered} \text { 316H } \\ \text { Billet } 1^{11} \end{gathered}$	0.040	12.0	16.4	2.48	0.005	0.007	0.17	0.21	0.003	0.002	0.147	0.020
$\begin{gathered} 316 \mathrm{H} \\ \text { UK-NAMRC² } \end{gathered}$	0.040	11.8	17.3	2.53	<0.01	<0.01	0.17	0.18	<0.003	<0.005	0.069	0.015
$\begin{gathered} \text { 316L } \\ \text { Billet } 1^{3} \end{gathered}$	0.012	11.5	17.4	2.22	0.006	<0.002	0.65	0.58	0.009	0.011	0.049	0.020
$\begin{gathered} \text { SA } 240 \\ \text { S31609 (316H) } \end{gathered}$	$\begin{gathered} 0.04- \\ 0.10 \end{gathered}$	$\begin{aligned} & 10.0- \\ & 14.0 \end{aligned}$	$\begin{aligned} & 16.0- \\ & 18.0 \end{aligned}$	$\begin{aligned} & 2.00- \\ & 3.00 \end{aligned}$	-	-	1.00	2.00	0.030	0.045		-
ASME III Div. $5\left(>595^{\circ} \mathrm{C}\right)$	≥ 0.04	$\begin{aligned} & 10.0- \\ & 14.0 \end{aligned}$	$\begin{aligned} & 16.0- \\ & 18.0 \end{aligned}$	$\begin{aligned} & 2.00- \\ & 3.00 \end{aligned}$	0.04	0.03	1.00	2.00	0.030	0.045	≥ 0.05	-

Results - 316 SS Microstructure

316H - Billet 1

$$
\begin{gathered}
\mathrm{d}_{\mathrm{avg}}=35 \mu \mathrm{~m} \\
\mathrm{HV}_{0.3}=224
\end{gathered}
$$

316H - UK-NAMRC

$$
\begin{gathered}
\mathrm{d}_{\mathrm{avg}}=47 \mu \mathrm{~m} \\
\mathrm{HV}_{0.3}=194
\end{gathered}
$$

*SA240: ASTM No. 7 ($\mathrm{d}=31.8 \mu \mathrm{~m}$) or coarser *Sec. II Part A: ≤ 200 HV

Results - 316 SS Oxide Analysis

316H - Billet 1

Oxide Area Fraction $=0.15 \%$

316H - UK-NAMRC

Oxide Area Fraction $=0.37 \%$

Results - 316 SS Oxide Analysis

- Qualitative EDS Analysis - UKNAMRC 316H

5 rm	Ni	

Procedures - Fatigue Testing

$$
650^{\circ} \mathrm{C}, \Delta \varepsilon=1 \%, \quad R=-1, \quad \dot{\varepsilon}=0.001 \mathrm{~s}^{-1}
$$

Low cycle fatigue (LCF)

Creep-fatigue (CF) 30 min . Hold

$$
r=\left|\frac{\sigma_{\text {tensile }}}{\sigma_{\text {compression }}}\right|
$$

Results - 316L Billet 1

- $650^{\circ} \mathrm{C}, \Delta \varepsilon=1 \%, R=-1, \dot{\varepsilon}=0.001 \mathrm{~s}^{-1}$

Results - 316L UK-NAMRC

- $650^{\circ} \mathrm{C}, \Delta \varepsilon=1 \%, R=-1, \dot{\varepsilon}=0.001 \mathrm{~s}^{-1}$

Results - 316H Billet 1

- $650^{\circ} \mathrm{C}, \Delta \varepsilon=1 \%, R=-1, \dot{\varepsilon}=0.001 s^{-1}$

MRP

Results - 316H UK-NAMRC

- $650^{\circ} \mathrm{C}, \Delta \varepsilon=1 \%, R=-1, \dot{\varepsilon}=0.001 s^{-1}$

Results - Wrought vs. PM-HIP

Oxygen Comparison for PM-HIP Materials

*Note: excludes other compositional and grain size influence

Results - Crack Morphologies

Results - Crack Morphologies

- Creep-Fatigue 316H UK-NAMRC

Results - Crack Morphologies

- Creep-Fatigue 316H UK-NAMRC

Conclusions

- PM-HIP 316 stainless steels continued to show reduced cycles to failure under creep-fatigue testing conditions compared to wrought 316 stainless steel
- Grain boundary oxides are likely resulting in reduced creep-fatigue resistance through crack nucleation and propagation
- Microstructure showed grain boundary cavitation ahead of the main crack
- Low cycle fatigue specimens showed transgranular and intergranular crack propagation
- Creep-fatigue specimens only showed intergranular crack nucleation/propagation

Future Work

- Conduct elevated temperature mechanical testing on 316H with low oxygen and processed using different hot isostatic pressing conditions
- One-third of the powder was hot isostatically pressed and underwent a heat treatment identical to MTC Billet 1
- Another third is being heat treated at different conditions to try to influence the oxide size/distribution

Powder Composition $(\mathbf{w t \%})$													
	$\mathbf{N i}$	$\mathbf{C r}$	$\mathbf{M o}$	\mathbf{C}	$\mathbf{S i}$	$\mathbf{M n}$	\mathbf{S}	\mathbf{P}	\mathbf{N}	\mathbf{O}			
316H Billet 2	12.0	17.0	2.53	0.05	0.20	0.21	0.003	0.004	0.101	0.0120^{*}			

