Structural Material

Powder Metallurgy – Hot Isostatic Pressing of Steels in Support of Microreactors

6 March 2024

Tate Patterson Welding Engineer, Idaho National Laboratory

Background

- Powder metallurgy hot isostatic pressing (PM-HIP) is a manufacturing method that produces components by consolidating metal powder
 - Minimizes additional fabrication steps
 - Eliminates solidification structures
 - Eliminates directional grain elongation caused by rolling or forging

MTC Powder Solutions

UK - Nuclear Advanced Manufacturing Research Center (UK-NAMRC) System

PM-HIP Adoption for Microreactors

 PM-HIP may benefit structural components for microreactors (i.e., core barrels, primary coolant loops, etc.) by reducing construction time, reducing waste, and improving component availability

Goals

- Demonstrate high temperature mechanical properties of PM-HIP compared to wrought materials for Sec. III Div. 5 structural alloys
- Address PM-HIP 316 stainless steels to support multiple advanced reactors
- Develop specifications and acceptance criteria for PM-HIP components
 - Low temperature code case (up to 371°C)
 - High temperature code case (371°C<T<816°C)

MARVEL Microreactor Components

PM-HIP Div. 5 Code Case Roadmap

PM-HIP Div. 5 Code Case Roadmap

Responsible Party TBD Task Group on Div. 5 AM Components Task Group on Div. 5 AM Components

Responsible Party TBD

Materials – 316 SS

Powder Compositions (wt%)												
	С	Ni	Cr	Мо	Ti	Al	Si	Mn	S	Р	Ν	0
316H Billet 1 ¹	0.055	11.8	16.3	2.51	0.01	0.01	0.18	0.22	0.01	0.003	0.140	0.0167*
316H UK-NAMRC ²	0.05	11.9	17.1	2.52	<0.01	0.01	0.17	0.18	0.002	0.004	0.076	0.0093*
316L UK-NAMRC ²	0.015	11.9	17.7	2.44	0.003	0.006	0.83	1.88	0.008	0.008	0.060	0.0117**

Consolidated Product Chemical Compositions (wt%)												
	С	Ni	Cr	Мо	Ti	AI	Si	Mn	S	Ρ	Ν	0
316H Billet 1 ¹	0.040	12.0	16.4	2.48	0.005	0.007	0.17	0.21	0.003	0.002	0.147	0.020
316H UK-NAMRC ²	0.040	11.8	17.3	2.53	<0.01	<0.01	0.17	0.18	<0.003	<0.005	0.069	0.015
316L Billet 1 ³	0.012	11.5	17.4	2.22	0.006	<0.002	0.65	0.58	0.009	0.011	0.049	0.020
SA 240 S31609 (316H)	0.04- 0.10	10.0- 14.0	16.0- 18.0	2.00- 3.00	-	-	1.00	2.00	0.030	0.045	-	-
ASME III Div. 5 (>595°C)	≥0.04	10.0- 14.0	16.0- 18.0	2.00- 3.00	0.04	0.03	1.00	2.00	0.030	0.045	≥0.05	-

¹Solution heat treated at 1050°C for 2 hours 16 minutes followed by water quenching

² Solution heat treated at 1050°C for 4 hours followed by water quenching

³ Solution heat treated at 1055°C for 4 hours followed by water quenching

*Measurement from full powder fraction (500 µm)

**Measurement sieved to 63 µm

Results – 316 SS Microstructure

316H – Billet 1

316H – UK-NAMRC

 $d_{avg} = 35 \ \mu m$ $HV_{0.3} = 224$

 $d_{avg} = 47 \ \mu m$ $HV_{0.3} = 194$

Results – 316 SS Oxide Analysis

316H – Billet 1

Oxide Area Fraction = 0.15%

316H – UK-NAMRC

Oxide Area Fraction = 0.37%

Results – 316 SS Oxide Analysis

• Qualitative EDS Analysis – UKNAMRC 316H

Procedures – Fatigue Testing

Results – 316L Billet 1

Results – 316L UK-NAMRC

Results – 316H Billet 1

Results – 316H UK-NAMRC

Results – Wrought vs. PM-HIP

316H Stainless Steel

Oxygen Comparison for <u>PM-HIP Materials</u>

*Note: excludes other compositional and grain size influence

Results – Crack Morphologies

Results – Crack Morphologies

• Creep-Fatigue 316H UK-NAMRC

Results – Crack Morphologies

• Creep-Fatigue 316H UK-NAMRC

Backscatter Electron Image

X-Ray CT

1000 µm

Conclusions

- PM-HIP 316 stainless steels continued to show reduced cycles to failure under creep-fatigue testing conditions compared to wrought 316 stainless steel
- Grain boundary oxides are likely resulting in reduced creep-fatigue resistance through crack nucleation and propagation
 - Microstructure showed grain boundary cavitation ahead of the main crack
- Low cycle fatigue specimens showed transgranular and intergranular crack propagation
- Creep-fatigue specimens only showed intergranular crack nucleation/propagation

Future Work

- Conduct elevated temperature mechanical testing on 316H with low oxygen and processed using different hot isostatic pressing conditions
 - One-third of the powder was hot isostatically pressed and underwent a heat treatment identical to MTC Billet 1
 - Another third is being heat treated at different conditions to try to influence the oxide size/distribution

Powder Composition (wt%)												
	Ni Cr Mo C Si Mn S P N (0		
316H Billet 2	12.0	17.0	2.53	0.05	0.20	0.21	0.003	0.004	0.101	0.0120*		

