

Molten Salt Reactor P R O G R A M

Ab initio molecular dynamics study of MgCl₂-KCl mixtures

Manh-Thuong Nguyen

Pacific Northwest National Laboratory

Annual MSR Campaign Review Meeting 16-18 April 2024

OBJECTIVE

We will generate missing thermophysical, structural, and transport data for MgCl₂–KCl mixtures at different temperatures and compositions using atomistic modeling and data science.

- We propose to investigate the binary system of MgCl₂-KCl with different compositions and temperatures using ab initio molecular dynamics
- This research will be complementary to experimental studies by the team led by Kyle Makovsky at PNNL.

Level 3 milestone, complete summary report on binary systems of MgCl₂ KCl using AIMD, due September 30, 2024.

Why MgCl₂-KCl?

- Important (and interesting)
- Abundant resource
- Relatively low melting point
- Can be used as coolant salts
- Not only for nuclear energy but also for solar energy.

Milani et al. Metals **2023**, *13*(5), 832

Investigated systems

- Works in the literatures usually focus on the eutectic mixture (~ 0.32 MgCl₂ 0.68 KCl)
- Five *x*MgCl₂(1-*x*)KCl compositions: *x* = 0.3, 0.4,
 0.5, 0.6, and 0.7
- Four temperatures: 900, 1000, 1100, and 1200 K
- Totally, 20 systems.

Milani et al. Metals **2023**, *13*(5), 832

Molecular dynamics for molten salts

- Wide range of properties:
- Density; Heat capacity
- Mass transport; Charge transport
- Heat transport; Viscosity
- Enthalpy; Entropy
- Structure.

AIMD (in use): **potential energy surface U(r)** calculated with density functional theory (DFT)

5

AIMD density validation

- Computational recipe:
 - $_{\circ}$ CP2K code
 - $_{\circ}$ Systems of ~ 110 atoms
 - First, classical molecular dynamics (CMD) using polarizable ion models: NPT ensemble.
 - Next, AIMD: NPT ensemble
 - Density = total mass / volume.
- Liquid density: linearly dependent on temperature.
- AIMD density is consistent with experimental data.

Exp 1: Kyle Makovsky (PNNL) Exp 2: G. Janz et al. J. Phys. Chem. Reference Data 4, 871–1178. doi:10.1063/1.555527

Dependence of density on composition

- Higher MgCl₂ concentration leads to higher density
- Temperature-dependent equation

 $\circ \ \rho = B - A.T$

MgCl₂ mol%	B (g/cc)	A (10 ⁻⁴ g/cc / K)	T range (K)	Ref
30	1.99	4.19	900-1200	This work
32	1.93	4.48	770-863	AIMD, [1]
33	2.00	4.57	1030-1150	Exp., [2]
40	2.09	4.97	900-1200	This work
50	2.11	4.95	900-1200	This work
60	2.13	4.86	900-1200	This work
70	2.10	4.49	900-1200	This work

Ref 1: T. Xu et al. Journal of Molecular Liquids 347 (2022) 118275 Ref 2: G. Janz et al. J. Phys. Chem. Reference Data 4, 871–1178. doi:10.1063/1.555527

Diffusion coefficient from MD trajectories

• Mean square displacement (MSD)

of ion *i* (e.g., Cl⁻):

$$MSD_{i} \equiv \langle |ri(t) - ri(0)|^{2} \rangle$$
$$D_{i} = \frac{1}{6} \frac{d(MSDi)}{dt}$$
$$D_{sys} = \sum_{i} a_{i} D_{i}$$

• Consistent with literature.

Diffusion coefficient (10 ⁻⁵ cm ² /s)					
MgCl ₂ mol%	T(K)	Mg ²⁺	K⁺	Cl-	Ref
30	900	2.20	3.66	3.56	This work
32	867	1.88	4.24	3.31	Ref [1]

Ref [1]: T. Xu et al. Journal of Molecular Liquids 347 (2022) 118275

Dependence of diffusion coefficient on composition

• Trend 1: $D_{K+} > D_{Cl-} > D_{Mg2+}$

Atomic mass (au)				
Mg	CI	K		
24.305	35.453	39.0983		

Trend 2: D(low MgCl₂) > D(high MgCl₂)

Diffusion coefficient (10 ⁻⁵ cm ² /s)						
MgCl ₂ mol%	T(K)	Mg ²⁺	K⁺	Cl-	All	
30	900	2.20	3.66	3.56	3.41	
	1200	3.86	7.04	6.20	6.15	
40	900	1.87	3.27	2.88	2.81	
	1200	6.21	8.25	8.15	7.85	
50	900	1.59	2.47	2.56	2.35	
	1200	5.42	8.32	7.15	7.04	
60	900	1.08	1.76	1.65	1.54	
	1200	5.03	7.39	6.52	6.31	
70	900	1.14	2.17	1.49	1.48	
	1200	5.42	8.33	6.21	6.24	

Viscosity calculated using diffusion coefficient

• Stokes-Einstein relation
$$\eta = \frac{k_B T}{2\pi D r}$$

Combination rule for hydrodynamic radius

$$r = (d_{K-K} + d_{Mg-Mg} + d_{Cl-Cl} +$$

 $2d_{Cl-K} + 2d_{Cl-Mg})/7$

• Calculated data consistent with experimental data.

MgCl ₂ mol%	T(K)	Viscosity (cP)	Note
30	900	1.65	This work
33	900	1.70	Experiment, Ref [1]

Ref [1]: G. Janz et al. J. Phys. Chem. Reference Data 4, 871–1178. doi:10.1063/1.555527

Dependence of viscosity on concentration

- High temperature, low viscosity
- The effect of MgCl₂ concentration on the viscosity is stronger at higher temperatures.

Radial distribution functions (RDFs)

lonic radii (pm)				
Mg ²⁺	K+	Cl-		
86	152	167		

- Mg-Cl interactions are stronger than K-Cl interactions
- Mg-Cl and K-Cl interactions are decreased with the MgCl₂ molar fraction.

Angle distribution

- The distribution of CI-K-CI is broader than that of CI-Mg-CI
- CI-Mg-CI peaks at ~90° suggests octahedral structures
- Higher temperature leads to broader distribution.

Coordination number

- Coordination number is increased with MgCl₂ concentration but decreased with the temperature
- Temperature shows a stronger effect on the coordination of K⁺.

Summary and Next steps

- The density of MgCl₂-KCl mixtures was determined for 5 compositions at 4 temperatures.
- Transport (diffusion coefficient and viscosity) properties are composition- (and temperature) dependent
- Coordination number is increased with temperature
- We will investigate specific heat and thermal conductivity.

Publications

 Manh-Thuong Nguyen *et al.* "Exploring NaCl-PuCl₃ molten salts with machine learning interatomic potentials and graph theory", Applied Materials Today 35, 101951 (2023).

AIMD and ML interatomic potentials

 Manh-Thuong Nguyen *et al.* "A combined computational and experimental study on NaCl-UCl₃-PuCl₃ molten salts" (in preparation).

16

Thank you

Email Address: manhthuong.nguyen@pnnl.gov

U.S. DEPARTMENT OF Office of NUCLEAR ENERGY