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Motivation

Development of acoustic monitoring techniques that can be
coupled with embedded sensors for in-situ structural monitoring
of an inaccessible microreactor core block

Diagram from LA-UR-20-20824

Goals

Demonstrate acoustic sensitivity to the stress state and structural
integrity of joints between sections of a modular microreactor
core-block-like object

- Use nonlinear elasticity to
detect changes in material
properties and joint integrity

* Apply machine learning to identify state-of-stress
and the data features to prioritize in future
embedded sensor deployments




Structural monitoring using acoustics
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Resonant Ultrasound Spectroscopy:
linear (RUS) & nonlinear (NRUS)
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Baseline nonlinear elasticity of the sample is
largely consistent regardless of stress state
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Nonlinear hysteretic response (a) is highly sensitive to o
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Increasing
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We expect a to correlate with stress after
introducing a defect to the sample — nonlinearity
generated at “soft” interface
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Machine Learning

Neural network predicts state of
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ML model predicted stress state correctly in
94% of time windows using Y-component data
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95 scan points

Most important data features for correct prediction
are amplitude (SNR) & Y-component of motion

Amplitudes of correct predictions

are ~50% higher than incorrect
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Milestone status
* M3 report (LANL)

— Preliminary results and work plan to accomplish M2 objectives
— Delivered on schedule (Feb. 10, 2023)

M2 report (LANL)

— Demonstration of acoustic sensitivity to stress changes and
defects, in preparation for future embedded sensors

— On track to meet due date (June 30, 2023)
Upcoming work

* Repeat data collection for intact
sample in vertical orientation (ongoing)

— 6 torque & 10 excitation levels
* Cut sample in half and restress, test

« Alter surface roughness of cut interface
to test sensitivity to defect changes

* Integrate results with embedded sensing
plan from ORNL



