

Molten Salt Reactor P R O G R A M

Ab initio molecular dynamics study of NaCI-UCI₃-PuCI₃ mixtures

Manh-Thuong Nguyen

Pacific Northwest National Laboratory

Annual MSR Campaign Review Meeting 2-4 May 2023

Molten salt data base development

Toni Karlsson (INL)

Marisa Monreal (LANL)

Manh Nguyen (PNNL)

Vanda Glezakou (ORNL)

OBJECTIVE

We will generate missing thermophysical, structural, and transport data for NaCl- UCl_3 -PuCl_3 mixtures at different temperatures and compositions using atomistic modelling and data science.

 "For FY23, we propose to investigate the ternary system of NaCl-UCl₃-PuCl₃ using AIMD in conjunction with data science approaches. Such a system is highly relevant to molten salt nuclear reactors. This research will be complementary to experimental studies by INL and LANL and theoretical studies by ORNL .The proposed work will consider 2 systems of 1-10 mol% PuCl₃ at 3 different temperatures."

• "Level 3 milestone, Complete Summary report on ternary system of NaCl-UCl₃-PuCl₃ using AIMD due September, 30, 2023."

Molecular dynamics is our main approach

Molecular dynamics in a nutshell

- Density; Heat capacity
- Mass transport; Charge transport
- Heat transport; Viscosity
- Enthalpy; Entropy
- Structure

AIMD (in use): potential energy surface U(r) calculated with density functional theory (DFT) MLD-MD: U(r) calculated with a machine learning interatomic potentials trained on AIMD potentials

The atomic systems

- NaCl-UCl₃-PuCl₃ is considered as a fuel salt.
- Use eutectic UCl₃-NaCl (34mol%-66mol%) as the "host" molten salt
- System 1: 5 mol% PuCl₃ added to eutectic UCl₃-NaCl
- System 2: 10 mol% PuCl₃ added to eutectic
 UCl₃-NaCl
- Unit cells: ~110 atoms for AIMD, and ~880 atoms for machine learning interatomic potentials MD

AIMD predicts MS densities

- NPT ensemble.
- Linear dependence of the density on the temperature.
- Increasing PuCl₃ leading to higher density
- No direct comparison with experiment, but the trend looks similar

Exp1:Toni Y. Karlsson (INL)

Exp2: Desyatnik et al. Soviet Atomic Energy 39, 649-651 (1975)

Machine learning interatomic potentials help accelerate transport studies

- Transport properties (e.g., diffusion) require intensive sampling
- AIMD is time-consuming
- Machine learning interatomic potentials, trained on AIMD potential energy surfaces, offer a

more feasible approach

Machine learning interatomic potential molecular dynamics predicts diffusion coefficients

- U: orange, Pu: purple
 - Arrhenius-type diffusion
 - Diffusion coefficient trend: Na⁺ > Cl⁻ > Pu³⁺ \ge U³⁺
 - Diffusion coefficient of the whole system is similar to that of CI.

Viscosity is determined from diffusion coefficient

 $\eta = \frac{k_B T}{2\pi D d}$

• Combination rule for hydrodynamic radius

 $d = (d_{ClCl} + d_{NaNa} + d_{UU} + d_{PuPu}$ $+2d_{ClNa} + 2d_{ClU} + 2d_{ClPu})/10$

- Trend: the mixture is more viscous with higher content of PuCl₃
- We will also calculate the viscosity with pressure tensors

Higher PuCl₃ concentration leads to higher coordination numbers

- Coordination number is decreased with temperature
- All cations have quite similar coordination numbers

Summary and Look ahead

- The density of the ternary system PuCl₃-NaCl-UCl₃ was determined for 2 compositions at 4 temperatures
- Transport (diffusion coefficient and viscosity) properties are composition- (and temperature) dependent
- Coordination number is increased with temperature
- We will investigate specific heat and thermal conductivity

Publications:

- Toni Karlsson, Scott C. Middlemas; Manh-Thuong Nguyen; Michael E. Woods; Kevin R. Tolman; Vassiliki-Alexandra Glezakou; Steven D. -Herrmann; Juliano Schorne-Pinto; Ryan D. Johnson; Shawn E. Reddish; Stephen A. Warmann; Patricia D. Paviet, "Synthesis and Thermophysical Property Determination of NaCl-PuCl₃ Salts" Journal of Molecular Liquids (under revision)
- Manh-Thuong Nguyen et al. "NaCl-PuCl₃ Molten Salts: Transport and Structural Properties from Machine Learning Interatomic Potentials and Data Analytics" (to be submitted)

□ Presentations:

 Conference (invited talk): Manh-Thuong Nguyen "Computational Approaches to Study Heavy Element Materials" at "6th International Symposium on Frontiers in Materials Science (FMS 2022)", Phu Quoc, Vietnam, November 21-23, 2022.

Thank you

Email Address: manhthuong.nguyen@pnnl.gov

U.S. DEPARTMENT OF Office of NUCLEAR ENERGY