

MARVEL Technology Review:

Utilization of MARVEL: Advanced Sensors and Controls Deployment

October 20, 2022 - 10:15

Troy Unruh – INL Measurement Science Department / Advanced Sensors and Instrumentation

DOE Advanced Sensors and Instrumentation (ASI) program Mission, Vision, Goals, and Strategic R&D

Mission:

Develop advanced sensors, instrumentation, and controls (I&C) that address critical technology gaps for monitoring and controlling existing and advanced reactors and supporting fuel cycle development.

Vision:

Program Goals:

Identify technology gaps for sensors and instrumentation Increase technology maturity to expand applicability Demonstrate technologies in relevant conditions Support modeling simulation code validation Support fuels and materials qualification

Strategy to achieve goal:

Regular communication with stakeholders via conferences, surveys, and workshops

Engage with University, National Laboratories, and Industry through Funding Opportunity Announcements

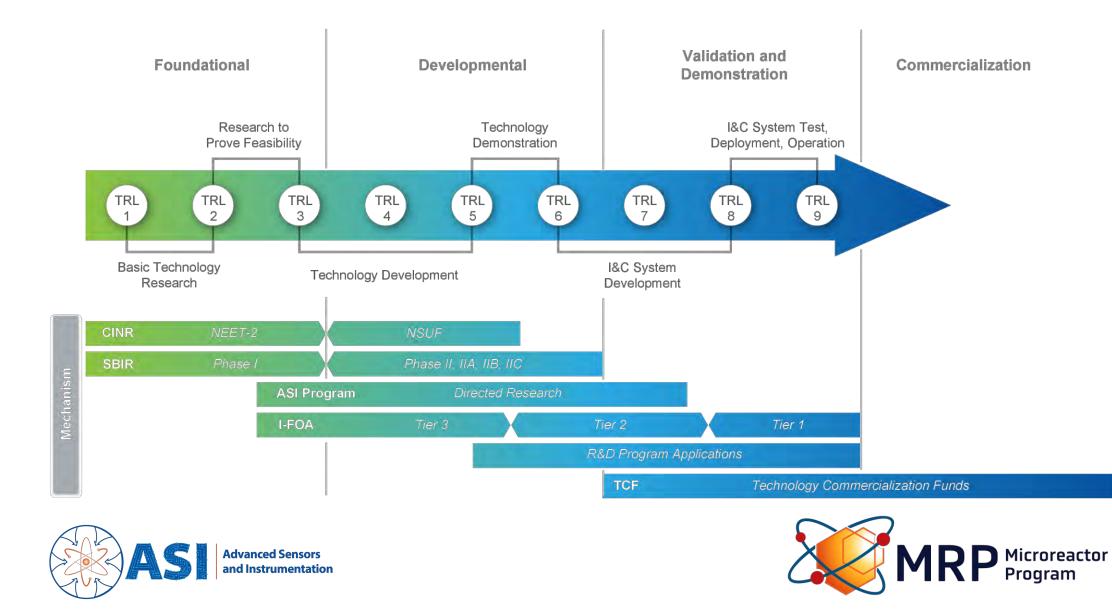
Program research will result in advanced sensors and I&C

technologies that are ultimately qualified, validated, and ready to be

Partner with University and National Laboratory reactors to facilitate prototypic deployment

Compile and distribute collected experimental data for benchmarking code cases and studies

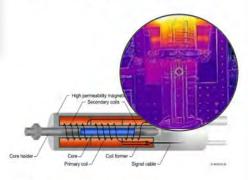
adapted by the nuclear industry.


Coordinate with congruent DOE-NE programs to supply instruments necessary for materials testing

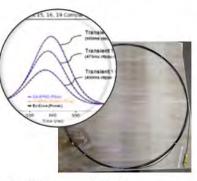
The ASI program focuses on innovative research that directly supports and enables the sustainability of the current nuclear fleet. The development and deployment of next generation reactor designs, and advanced fuel-cycle technologies.

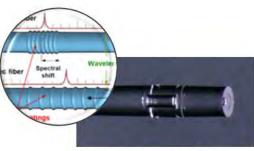
ASI technology maturation mechanisms

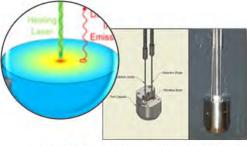
Various ASI program achievements on sensors and sensor systems for irradiation experiments


Ultrasound thermometer commercialization

-WAVE INNOVATION


Over the course of the last 11 years, the <u>ASI program</u> has fostered the development and commercialization of a wide range of technologies spanning the inception of novel sensing methods and the enhancement of instrumentation with a long history of commercial utilization. The program has funded over \$58 million in RD&D which supports the US Department of Energy and the US DOE Office of Nuclear energy missions. Sensors developed under the ASI program have been used to support other DOE-NE programs and have been commercialized for nuclear industry adoption.


High Temperature Irradiation Resistant (HTIR) thermocouples


Linear Variable Differential Transformer (LVDT) for fission gas pressure measurement

Self Powered Detectors and miniaturized Fission Chambers for local neutron flux measurement

Fiber optic sensors for nuclear applications

Real time measurement of fuel material properties in-core

Sensor maturation using DOE testing infrastructure & MARVEL?

Irradiation test requirements and technology maturity largely determine the appropriate facility for testing

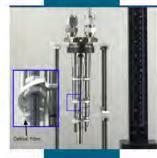
Low sensor TRL Technology Easier Access Lower Cost Tests Separate effects testing

OSUR University Reactor

PULSTAR University Reactor

MITR University Reactor High sensor TRL Technology Limited Access Higher Costs, High Dose Controlled Prototypic Environment

DEVELOPMENT


PROTOTYPIC DEPLOYMENT

ASI Focus Activities and Near-Term Outcomes & MARVEL?

Sensors for Irradiation Experiments

LVDT Passive Monitors Material Properties

Evaluate domestic supply chain for temperature tolerance by 2023 and radiation resistance by 2024 Benchmark SiC readout capabilities by 2024, incorporate advanced readout functionality for printed melt wires by 2025 Finish development of thermal conductivity probe by 2023, perform test on U10Zr fuel specimen by 2025

Sensors for Advanced Reactors

Self Powered Detectors (SPD) Fission Chambers Optical Fibers Acoustic Sensors Thermocouples Rad-hard electronics

Develop temp compensation *by 2024*, establish neutron spectrum unfolding tool *by 2026* Perform cross calibration with SPDs in heated irradiation *by mid-2025* Incorporate active compensation technique *by 2023*, extend temperature tolerance range of pressure sensor *by 2025* Benchmark new UT design *by 2025*, design optimization and benchtop testing of ultrasonic flow sensor *by 2026* Develop drift compensation model *by 2024* and perform/complete evaluation testing *by 2026* Fabricate radiation tolerant digitizer *by 2024*, with reliability demonstration *by 2027*

Sensors Integration

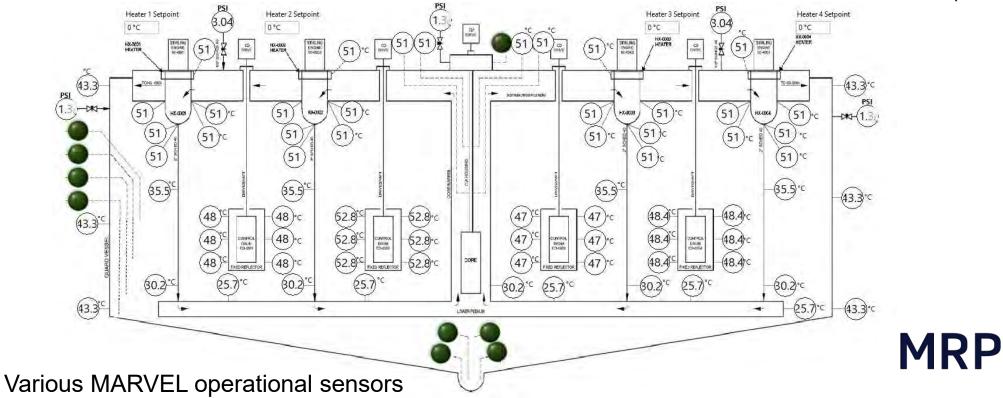
Digital Twin Communication Advanced Controls

Develop model of adv. nuclear system 2023-2024, and develop AI/ML tools with standard interfaces by 2025 Qualify non-RF communication methods (i.e., fiber optics, induction, and acoustic) 2024-2025 Develop simulation platform for adv. digital control technology dev. by 2024, and initiate testing of platform 2024-2025

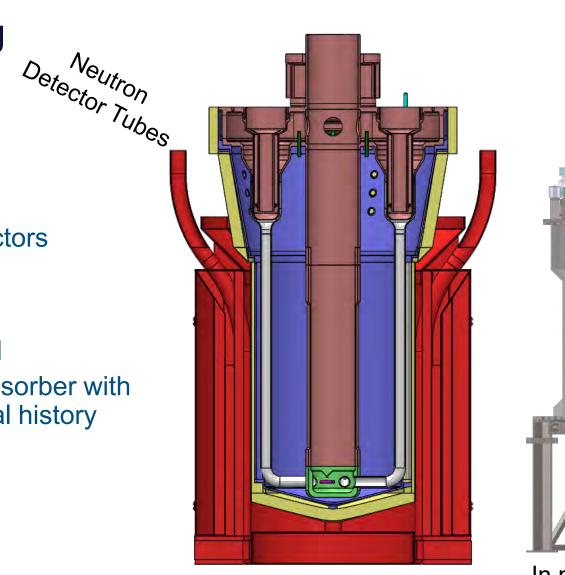
Al/ ML = Artificial Intelligence & Machine Learning SIC = Silicon Carbide

LVDT = Linear Variable Differential Transformer SPD = Self-Powered Detector RF = Radio Frequency UT = Ultrasonic Thermometer

Advanced Sensors and Instrumentation

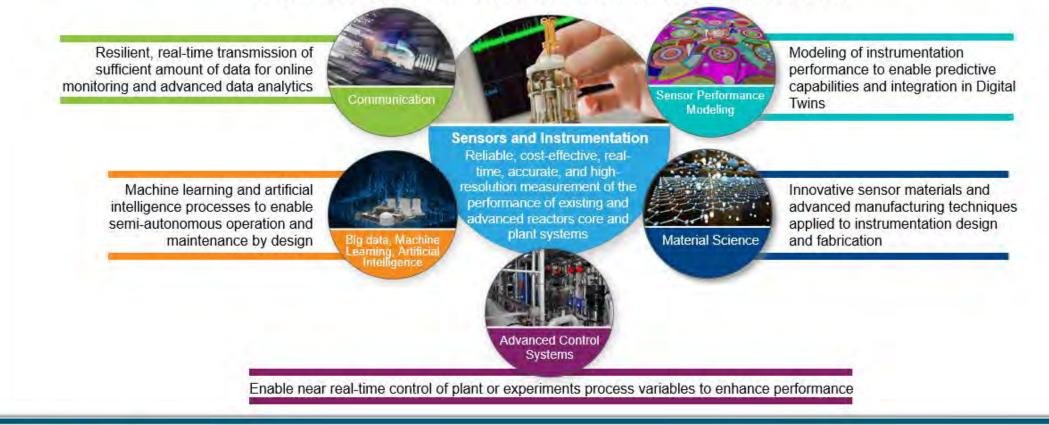

Sensor testing

- MARVEL operational instrumentation
 - Observe trends
 - Noise analysis using independent loop comparisons
 - Analog/digital comparisons
 - Radiation hardened electronics


ORNL Front End Digitizer (FREND)

Microreactor Program

Additional sensor testing


- Neutron detector tubes accessible
 - Share space with neutron detectors
- Sealed Primary
 - Very limited inside guard vessel
 - "Replace" Central Insurance Absorber with instrumentation <u>after</u> operational history established

Beyond sensors, ASI has several related R&D areas that can benefit from MARVEL

Planned R&D activities address the technology gaps identified for each section of the program focus areas and draw from a broad range of disciplines to support the development of Instrumentation and Control solutions:

ASI Focus Activities and Near-Term Outcomes & MARVEL?

Sensors for Irradiation Experiments

LVDT Passive Monitors Material Properties

Evaluate domestic supply chain for temperature tolerance by 2023 and radiation resistance by 2024 Benchmark SiC readout capabilities by 2024, incorporate advanced readout functionality for printed melt wires by 2025 Finish development of thermal conductivity probe by 2023, perform test on U10Zr fuel specimen by 2025

Sensors for Advanced Reactors

Self Powered Detectors (SPD) Fission Chambers Optical Fibers Acoustic Sensors Thermocouples Rad-hard electronics

Develop temp compensation *by 2024*, establish neutron spectrum unfolding tool *by 2026* Perform cross calibration with SPDs in heated irradiation *by mid-2025* Incorporate active compensation technique *by 2023*, extend temperature tolerance range of pressure sensor *by 2025* Benchmark new UT design *by 2025*, design optimization and benchtop testing of ultrasonic flow sensor *by 2026* Develop drift compensation model *by 2024* and perform/complete evaluation testing *by 2026* Fabricate radiation tolerant digitizer *by 2024*, with reliability demonstration *by 2027*

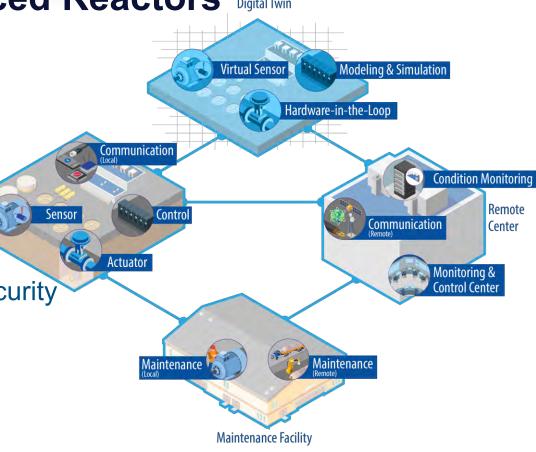
Sensors Integration

Digital Twin Communication Advanced Controls

Develop model of adv. nuclear system 2023-2024, and develop AI/ML tools with standard interfaces by 2025 Qualify non-RF communication methods (i.e., fiber optics, induction, and acoustic) 2024-2025 Develop simulation platform for adv. digital control technology dev. by 2024, and initiate testing of platform 2024-2025

Al/ ML = Artificial Intelligence & Machine Learning LVD SiC = Silicon Carbide SPD

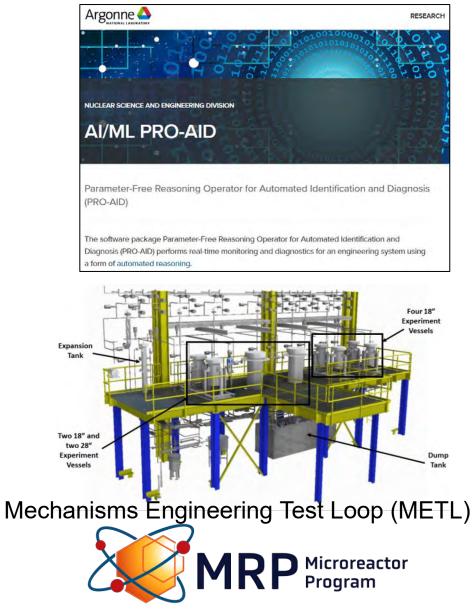
LVDT = Linear Variable Differential Transformer SPD = Self-Powered Detector RF = Radio Frequency UT = Ultrasonic Thermometer


Advanced Sensors and Instrumentation

ASI - Digital Technology for Advanced Reactors

Integrating Digital Twins with Advanced Controls

- Digital Twins introduce significant opportunities in:
 - Enhanced anomaly detection
 - System state quantification and predictions
 - Improved AI/ML assisted control systems performance
- Communications enable seamless integration of new technologies, network architectures and security options
- Advanced controls support introduction of:
 - Performance-based control algorithms
 - Fault-tolerant controls for semi-autonomous plant operation
 - Artificial Intelligence and Machine Learning assisted solutions that improve plant performance utilizing operating history and physics-based models

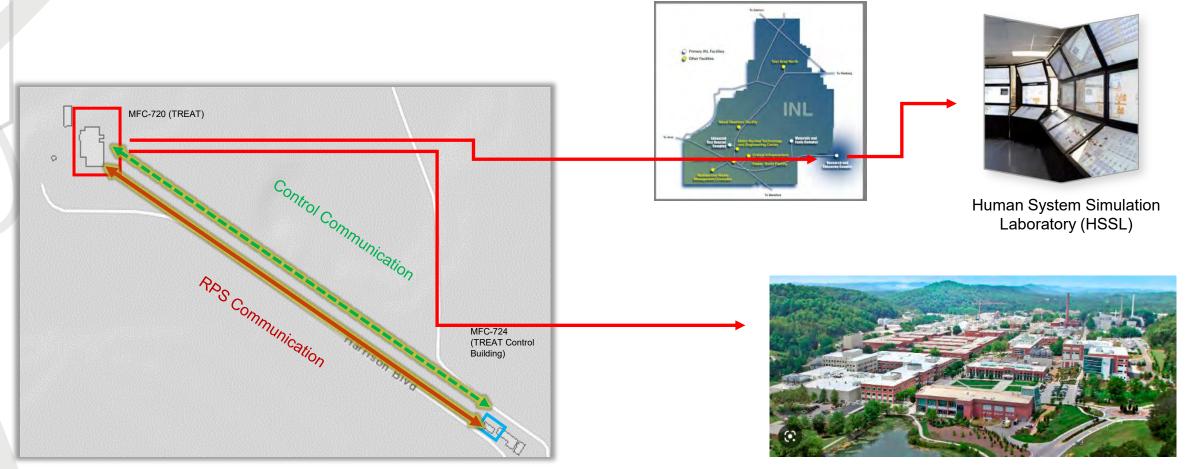


ASI Digital Technology for Advanced Reactors, ANL/INL FY23

- Advanced Controls
 - Show how a Digital Twin (DT) can be used to design and inform a controller of the state of a process to switch to different operations modes and to demonstrate this use case using ANL's Parameter-Free Reasoning Operator for Automated Identification and Diagnosis (PRO-AID) at Mechanisms Engineering Test Loop (METL), a non-nuclear liquid sodium flow facility
 - Control method (high performance, digital, or AI/ML based) demonstration using existing models
 - MARVEL
 - METL
 - MAGNET
 - etc.

MRP - Microreactor Automated Control System (MACS)

- MACS will use digital twins to automatically control microreactor hardware based on inputs from multiple sensors that could include measurements of reactor power, temperature, control element position, and heat rejection
- Development and demonstration activities will leverage existing designs for microreactors (initially MARVEL) to develop, test and demonstrate a high fidelity and robust MACS that can operate with minimal need for human-inthe-loop action
- Experimental demonstrations will focus on actuating microreactor-relevant hardware such as control element drive mechanisms, based on a simulated response from sensor inputs and the hardware in the loop simulator
- Operations training aid will allow operators to manipulate surrogate MARVEL control hardware prior to startup


Physical Digital Twin under construction

Enable remote operations and/or monitoring of MACS/MARVEL

- Remote operation could be "bootstrapped" with in-person operator oversight and facility monitoring
- Verify secure operation and evaluate cybersecurity concerns

ORNL campus

Advanced Sensors and Instrumentation

https://asi.inl.gov/#/ www.linkedin.com/in/pcalderoni

Troy Unruh

Nuclear Instrumentation Engineer (INL)

Troy.Unruh@inl.gov W (208)-526-6281 ORCiD: 0000-0003-2417-9060

LinkedIn

