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Microreactors

• Smaller size, factory assembled, need for more automated or autonomous operation to 
reduce O&M costs without economies of scale

• Critical components such as pumps, heat exchangers and turbines may be located closer to 
the core in a harsher environment with limited access

‒ Challenging to monitor or inspect, could benefit from advanced monitoring techniques
‒ Harsher environment also more challenging for sensors

Conventional reactor
https://www.energy.gov/ne/articles/nu
clear-101-how-does-nuclear-reactor-
work

Microreactor
https://inl.gov/trending-topic/microreactors/

MACS task

Acoustics task



Microreactor Automated Control System (MACS)

• Objective: Leverage prior efforts to 
develop, test and implement a high 
fidelity and robust MACS to minimize 
need for human-in-the-loop (HIL)

• Approach:
‒ Leverage existing designs for 

microreactors, available testbeds, 
and prior research on control 
systems

‒ Expected data/measurements: 
Reactor temperature, control 
element (drum or rod) position, 
coolant temperature and energy 
transfer to heat sink, and reactivity 
feedback

‒ HIL simulator, including heat 
transfer and simulated reactivity to 
demonstrate capability

Drum/motor 
control

Central 
absorber 

rod control



MACS status

Conceptual 
Interfaces 
for MACS

• Preliminary set of 
requirements defined 
in FY22

‒ Reactor power 
control

‒ Cooling medium 
‒ Power 

conversion unit
‒ Surveillance and 

diagnostics
• MACS concept and 

design defined; 
implementation 
underway

• Demonstration 
hardware at INL being 
leveraged for MACS 
implementation and 
demo



Fiber-optic acoustic sensors for health monitoring

• Fiber optic sensors: Many different 
interrogation techniques

‒ High frequency (~MHz or higher)
‒ High accuracy (~nm displacements)
‒ Spatially distributed measurements 

(~cm resolution)
• Small diameter (~100 µm)
• Immunity to electromagnetic interference
• High temperature tolerant (< 1,000°C)
• Radiation tolerant
• Many applications within nuclear power 

plants
‒ Structural damage (cracking, 

debonding, corrosion, creep)
‒ Components in need of maintenance
‒ Vibrations
‒ Loose parts or acoustic emissions

Distributed acoustic sensing to 
determine not just the timing but 
the location of a potential reactor 

issue
https://www.bandweaver.com/wp-content/uploads/2016/07/t-

laser_beam-01-web.jpg
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Interrogation systems for nuclear applications
• Distributed acoustic sensing (DAS)

‒ Uses ordinary optical fiber
‒ ~1 meter spatial resolution over ~10 km
‒ ~10 kHz frequencies
‒ Low tolerance to radiation-induced 

attenuation
‒ No systems on hand (>$100k)

• Swept wavelength laser-based sensing
‒ Can interrogate point (ordinary fibers) or 

distributed sensors (fiber Bragg gratings, 
FBGs)

‒ Up to tens of FBGs per fiber, ~cm spacing
‒ ~1 kHz frequencies
‒ High tolerance to radiation-induced 

attenuation
• Low coherence interferometry (LCI) sensing

‒ Point sensors
‒ Custom interrogation system developed at 

ORNL
‒ ~MHz frequencies or higher
‒ Low tolerance to radiation-induced 

attenuation

DAS100 from 
Bandweaver
https://www.bandweaver.com/wp-
content/uploads/2016/07/DAS-Horizon-
product-640x480px.jpg

Hyperion si155 from 
Luna Innovations
https://lunainc.com/sites/default/files/styles
/image_497/public/assets/images/products
/SI155_new%20logo.jpg?itok=9nI-pN5a

ORNL custom 
LCI system



Sensors for nuclear applications
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• Fibers should use pure silica core, F-doped 
silica cladding to minimize radiation-
induced attenuation

• Single-point sensors: Fabry-Perot cavities 
(FPCs)

‒ Two Cu-coated optical fibers bonded 
inside a capillary tube

‒ One fiber temporarily bonded to Ni 
capillary using epoxy

‒ 2nd fiber bonded after adjusting gap
‒ Fibers fused to Ni capillary via local 

fusion with a laser
• Distributed sensors: FBGs

‒ 29 FBGs inscribed every 2 cm over a 
56 cm length of fiber

‒ 5 nm wavelength spacing from 1470–
1610 nm

‒ Must be sheathed in a metal capillary 
tube (weak acoustic coupling)
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Bonding techniques for nuclear applications

S3
S1
S2

FPC sensors bonded 
to SS304 pipe or rods 
for acoustic testing

• Acoustic sensing is much more effective if the fiber is directly bonded to the component
‒ Challenging for fiber to remain bonded despite large static strain due to differential 

thermal expansion and/or radiation-induced dimensional changes
• FBGs can be contained in tight-fitting capillaries

‒ Relies on friction
• FPCs tack-welded to SS304 pipes or rods

‒ Interrogated with LCI and reference piezo-electric accelerometer
‒ Compared acoustic resonant frequencies with theoretical values at low and high 

temperature



Initial testing of bonded FPCs
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• FPC frequencies consistent with accelerometer and theory
• FPC temperature trends consistent with theory up to 350°C

‒ Furnace trip prevented testing at higher temperatures
‒ Accelerometers only provided data outside high 

temperature region
• Results encouraging but require further testing at higher 

temperatures



Milestones and future work

MACS
• M3: Complete conceptual design for MACS (6/30/2023)

‒ Requires integration with INL efforts to stand up non-nuclear demonstration capabilities
‒ INL has a M2 to demonstrate actuation of a non-nuclear control system using MACS

Acoustics
• M3: Investigate and demonstrate acoustic and high temperature sensing to support 

structural health monitoring for microreactors (7/28/2023)
‒ Evaluate sensitivity to damage (e.g., bonded vs. debonded heat pipes)
‒ Higher temperature testing to quantify sensor limitations
‒ Evaluate potential for spatially distributed measurements using FBGs at high 

temperatures
‒ Closely connected to LANL efforts on flaw detection toward acoustic demonstration in a 

relevant component



Backup slides



Approach

• Develop sensors and attachment 
techniques for monitoring acoustic 
vibrations of microreactor components

‒ Goal is to detect signs of damage or 
required maintenance

‒ Cracking, debonding, corrosion, creep, 
etc. 

• Sensors must be compatible with typical 
microreactor materials and expected 
operating conditions

‒ Stainless steels, nickel-based alloys, 
etc.

‒ Temperatures approaching 800°C or 
higher

‒ Fast neutron exposure
‒ Potentially compatibility with corrosive 

media (sodium vapor, molten salt, lead, 
etc.)

Simulation showing 
impact of a failed heat 
pipe [1] that could be 

detected using acoustic 
techniques

[1] Galloway J.D. et al. (2020) 
Effects of Heat Pipe Failures 
in Microreactors. LA-UR-20-
23798

Potential application: Monitoring 
debonding of heat pipes to a 

microreactor core block



Full spectra obtained at high temperatures
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• Spectral features maintained during high temperature testing, but amplitudes did 
decrease, indicative of the cavity length expanding

• Cool down data shows that the cavity size does not return to pre-test size
• If the fiber/sheath interface yields but still allows for acoustic measurements to be made, 

that is encouraging for the potential of the sensor to survive higher temperatures and 
static strains


