Instrumentation and Sensors – Microreactor Automated Control System (MACS) and Acoustics

Chris Petrie | Group Leader, Oak Ridge National Laboratory

Contributions from: Pradeep Ramuhalli, Dianne Ezell, Tony Birri, Dan Sweeney, Holden Hyer

Microreactors

- Smaller size, factory assembled, need for more automated or autonomous operation to reduce O&M costs without economies of scale
- Critical components such as pumps, heat exchangers and turbines may be located closer to the core in a harsher environment with limited access
 - Challenging to monitor or inspect, could benefit from <u>advanced monitoring techniques</u>,
 - Harsher environment also more challenging for sensors Acoustics task

Conventional reactor

https://www.energy.gov/ne/articles/nu clear-101-how-does-nuclear-reactorwork

MACS task

Microreactor https://inl.gov/trending-topic/microreactors/

Microreactor Automated Control System (MACS)

 Objective: Leverage prior efforts to develop, test and implement a high fidelity and robust MACS to minimize need for human-in-the-loop (HIL)

• Approach:

- Leverage existing designs for microreactors, available testbeds, and prior research on control systems
- Expected data/measurements: Reactor temperature, control element (drum or rod) position, coolant temperature and energy transfer to heat sink, and reactivity feedback
- HIL simulator, including heat transfer and simulated reactivity to demonstrate capability

MACS status

- Preliminary set of requirements defined in FY22
 - Reactor power control
 - Cooling medium
 - Power
 - conversion unit
 - Surveillance and diagnostics
- MACS concept and design defined; implementation underway
- Demonstration hardware at INL being leveraged for MACS implementation and demo

Fiber-optic acoustic sensors for health monitoring

- Fiber optic sensors: Many different interrogation techniques
 - High frequency (~MHz or higher)
 - High accuracy (~nm displacements)
 - Spatially distributed measurements (~cm resolution)
- Small diameter (~100 µm)
- Immunity to electromagnetic interference
- High temperature tolerant (< 1,000°C)
- Radiation tolerant
- Many applications within nuclear power plants
 - Structural damage (cracking, debonding, corrosion, creep)
 - Components in need of maintenance D
 - Vibrations
 - Loose parts or acoustic emissions

the <u>location</u> of a potential reactor issue

https://www.bandweaver.com/wp-content/uploads/2016/07/tlaser_beam-01-web.jpg

Interrogation systems for nuclear applications

- Distributed acoustic sensing (DAS)
 - Uses ordinary optical fiber
 - ~1 meter spatial resolution over ~10 km
 - ~10 kHz frequencies
 - Low tolerance to radiation-induced attenuation
 - No systems on hand (>\$100k)
- Swept wavelength laser-based sensing
 - Can interrogate point (ordinary fibers) or distributed sensors (fiber Bragg gratings, FBGs)
 - Up to tens of FBGs per fiber, ~cm spacing
 - ~1 kHz frequencies
 - High tolerance to radiation-induced attenuation
- Low coherence interferometry (LCI) sensing
 - Point sensors
 - Custom interrogation system developed at ORNL
 - ~MHz frequencies or higher
 - Low tolerance to radiation-induced attenuation

Hyperion si155 from Luna Innovations

https://lunainc.com/sites/default/files/styles /image_497/public/assets/images/products /SI155_new%20logo.jpg?itok=9nI-pN5a

DAS100 from Bandweaver

https://www.bandweaver.com/wpcontent/uploads/2016/07/DAS-Horizonproduct-640x480px.jpg

ORNL custom LCI system

Sensors for nuclear applications

- Fibers should use pure silica core, F-doped silica cladding to minimize radiation-induced attenuation
- Single-point sensors: Fabry-Perot cavities (FPCs)
 - Two Cu-coated optical fibers bonded inside a capillary tube
 - One fiber temporarily bonded to Ni capillary using epoxy
 - 2nd fiber bonded after adjusting gap
 - Fibers fused to Ni capillary via local fusion with a laser
- Distributed sensors: FBGs
 - 29 FBGs inscribed every 2 cm over a 56 cm length of fiber
 - 5 nm wavelength spacing from 1470– 1610 nm
 - Must be sheathed in a metal capillary tube (weak acoustic coupling)

Bonding techniques for nuclear applications

- Acoustic sensing is much more effective if the fiber is directly bonded to the component
 - Challenging for fiber to remain bonded despite large static strain due to differential thermal expansion and/or radiation-induced dimensional changes
- FBGs can be contained in tight-fitting capillaries
 - Relies on friction
- FPCs tack-welded to SS304 pipes or rods
 - Interrogated with LCI and reference piezo-electric accelerometer
 - Compared acoustic resonant frequencies with theoretical values at low and high temperature

Initial testing of bonded FPCs

Accelerometers only provided data outside high

Results encouraging but require further testing at higher

temperature region

Detected Accelerometer Peaks

•

•

temperatures

Milestones and future work

MACS

- M3: Complete conceptual design for MACS (6/30/2023)
 - Requires integration with INL efforts to stand up non-nuclear demonstration capabilities
 - INL has a M2 to demonstrate actuation of a non-nuclear control system using MACS

Acoustics

- M3: Investigate and demonstrate acoustic and high temperature sensing to support structural health monitoring for microreactors (7/28/2023)
 - Evaluate sensitivity to damage (e.g., bonded vs. debonded heat pipes)
 - Higher temperature testing to quantify sensor limitations
 - Evaluate potential for spatially distributed measurements using FBGs at high temperatures
 - Closely connected to LANL efforts on flaw detection toward acoustic demonstration in a relevant component

Backup slides

Approach

- Develop sensors and attachment techniques for monitoring acoustic vibrations of microreactor components
 - Goal is to detect signs of damage or required maintenance
 - Cracking, debonding, corrosion, creep, etc.
- Sensors must be compatible with typical microreactor materials and expected operating conditions
 - Stainless steels, nickel-based alloys, etc.
 - Temperatures approaching 800°C or higher
 - Fast neutron exposure
 - Potentially compatibility with corrosive media (sodium vapor, molten salt, lead, etc.)

Potential application: Monitoring debonding of heat pipes to a microreactor core block

Simulation showing impact of a failed heat pipe [1] that could be detected using acoustic techniques

> [1] Galloway J.D. et al. (2020) Effects of Heat Pipe Failures in Microreactors. LA-UR-20-23798

Full spectra obtained at high temperatures

- Spectral features maintained during high temperature testing, but amplitudes did decrease, indicative of the cavity length expanding
- Cool down data shows that the cavity size does not return to pre-test size
- If the fiber/sheath interface yields but still allows for acoustic measurements to be made, that is encouraging for the potential of the sensor to survive higher temperatures and static strains

