Overview

- MARVEL Thermal-hydraulics
- Modeling
- Boundary Conditions and Assumptions
- Acceptance Criteria
- Uncertainties and Hot Channel Factors
- Deterministic Safety Analysis Results
General Thermal-hydraulic Characteristics

- **MARVEL general thermal-hydraulic (TH) characteristics**: liquid metal cooled, low-power density, closed loop, series-parallel coupled natural circulation system.
System Description

- **Key TH characteristics:**
 - Use of *natural circulation* on primary and secondary sides
 - No pumps
 - Better flow distribution
 - Higher reliability
 - Simplicity
 - 4 loops
 - Core power: 85 kW_{th}
 - Low power densities (average values)
 - Core average NaK temperature at Hot Full Power (HFP): ~ 500 °C
 - Operating pressure in the cover gas zone: ~ 3.2 atm
System description

- Use of analytical models for preliminary system design and numerical code verification

\[\dot{m} = \left(\frac{2 \beta T g \Delta z_C}{c_p R \rho_0} \right)^{\frac{1}{3}} \]

- Elevation difference \(\Delta z_C \) between thermal centers: \(\sim 1.1 \) m
- Minimization of circuit pressure drops \(R \)
- Predicted total NaK mass flow at Hot Full Power: \(\sim 1.5 \) kg/s

- Non-dimensional analysis
 - for deriving steady-state maps
 - thermal-hydraulic stability studies

\[Re_{ss} = C \left[\frac{(Gr_m) \Delta z_C}{N_G} \right]^r = 1.956 \left[\frac{(Gr_m) \Delta z_C}{4524} \right]^{0.3636} \] [turbulent flow]
Thermal-hydraulic Modeling & Simulation Tools

- Modeling and simulation (M&S) strategy for safety analysis
 - Use **best-estimate** nuclear safety codes and commercial codes with **extensive nuclear pedigree** and **well-proven reliability**
 - Perform independent **high-fidelity** calculations using commercial computational fluid-dynamic (CFD) codes for selected system, structure, components (SSCs) for design validation
MARVEL Thermal-Hydraulic Design

- Use of INL's RELAP5-3D system thermal-hydraulic code as an M&S workhorse
- The RELAP series of codes have been developed at INL for over 50 years
 - RELAP5-3D is the flagship of nuclear reactor system analysis tools → most widely used nuclear reactor accident analysis code
 - Development still ongoing (e.g., integration into INL’s MOOSE framework)
 - Capability to model liquid metals systems
 - Several fluid properties libraries available
 - Specific correlations for liquid-metal heat transfer
 - 3-D hydraulic components, 3-D neutron kinetics
- TH model validation using MARVEL Integral Test Facility (ITF) Primary Coolant Apparatus Test (PCAT)
Boundary Conditions and Assumptions 1/2

- Core conditions from MCNP code Monte Carlo calculations
 - Core at Beginning of Life (BOL)
 - ANS-05 decay standard
 - Reactivity coefficients vs. temperature
 - Pin power peaking factors
 - Axial power peaking factor
Boundary Conditions and Assumptions 2/2

- Conservative assumptions for Beyond Extremely Unlikely events (BEU) → higher PCS and fuel temperatures
 - Gamma and neutron heating concentrated in the BeO
 - Other parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Best-Estimate</th>
<th>Conservative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overpower factor for the hot channel</td>
<td>1.0</td>
<td>1.15</td>
</tr>
<tr>
<td>Fuel heat transfer coefficient</td>
<td>Laminar/Turbulent</td>
<td>Laminar</td>
</tr>
<tr>
<td>Helium Stirling engine average temperature at HFP, °C</td>
<td>300</td>
<td>325</td>
</tr>
</tbody>
</table>
Acceptance Criteria

- For Extremely Unlikely (EU) events, applied to Beyond Extremely Unlikely (BEU) events
 - Fuel: from fuel mechanics analysis
 - Clad: avoid localized boiling (surface temperature < NaK saturation temperature at atmospheric pressure)
 - Bulk coolant: protect PCS integrity
 - Core: qualitative, respected if criterion 2) achieved

<table>
<thead>
<tr>
<th>Acceptance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

- Peak fuel centerline temperature < 925 °C
- Peak clad internal temperature < 764 °C
- Bulk coolant < 704 °C
- Core remains coolable
Deterministic Analysis Options

• RELAP5-3D is a Best Estimate code (BE)
• Safety analysis strategy: using combination of options 2+3
• Conservative assumptions for systems availability, e.g.
 − No scram

Options for Safety analysis
[from IAEA, SRS No. 52]
Uncertainties & Hot Channel Factors

• Hot channel factors (HCF) implemented in RELAP5-3D as safeguards against uncertainties (minimize margins)
 − protect fission product barriers (fuel, clad, PCS)
• HCF derived from references based on past experiences, analytical models, qualified references, high fidelity calculations
• HCF to be updated
 • using PCAT data
 • before going critical

\[T_M = T_{in} + \sum_{m=1}^{M} F_m \Delta T_{m,nom} \]

Temperatures of Interest

Cladding Temperature Distribution

Thermomechanical analysis of fuel elements, S.J. Yoon, ECAR-7210
Uncertainties & Hot Channel Factors

• HCF treat in a conservative way (direct + statistical combination) uncertainties on:
 - Coolant mixing
 - Power & temperature measurements
 - Core heat transfer coefficient
 - Fuel geometry tolerances
 - Material physical properties (fuel, coolant, clad, gap)
 - Fuel nuclear properties

• Probabilistic treatment being considered for future uncertainty quantification (UQ) using RELAP5-3D/RAVEN code
Normal Operation: Steady-State 1/2

• Steady State results for 36 TRIGA fuel rods, 1.414” OD (3.59 cm), 25” (63.5 cm) tall active core
• Reactor power: 85 KWth
• All structures in thermal equilibrium
• Good steady-state temperature margins

<table>
<thead>
<tr>
<th>Parameters - Primary & secondary side</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaK inlet core temperature, °C</td>
<td>471</td>
</tr>
<tr>
<td>NaK outlet core temperature, °C</td>
<td>540</td>
</tr>
<tr>
<td>NaK core temperature rise, °C</td>
<td>69</td>
</tr>
<tr>
<td>Total mass flow, kg/s</td>
<td>1.49</td>
</tr>
<tr>
<td>EGaInSn minimum temperature, °C</td>
<td>403</td>
</tr>
<tr>
<td>EGaInSn maximum temperature, °C</td>
<td>425</td>
</tr>
<tr>
<td>EGaInSn temperature rise, °C</td>
<td>22</td>
</tr>
<tr>
<td>IHX EGaInSn mass flow, kg/s</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Normal Operation: Steady-State 2/2

- Other relevant parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCS pressure drop, Pa</td>
<td>160</td>
</tr>
<tr>
<td>BeO side reflector maximum temperature, °C</td>
<td>519</td>
</tr>
<tr>
<td>PCS wall maximum temperature, °C</td>
<td>540</td>
</tr>
<tr>
<td>PCS primary pressure, kPa</td>
<td>307</td>
</tr>
<tr>
<td>Guard vessel to air heat losses, kW</td>
<td>4.8</td>
</tr>
<tr>
<td>Air riser nominal inlet temperature, °C</td>
<td>20</td>
</tr>
<tr>
<td>Air riser outlet temperature, °C</td>
<td>36</td>
</tr>
</tbody>
</table>
Normal Operation: Load Following

- **Load-follow:**
 - Simulate reaction to imposed power change: 100/75/100 % P_{nom} over ~2.5 hr period
 - All four Stirling engines in operation
 - Control system simulate reactivity insertion by control drums
 - Reactivity insertion vs. position
 - Drum rotation speed
 - Power changes imposed (simulate ±5% P_{nom}/min ramps)
 - PCS max temperature rate: ~0.91 °C/min (~54.5 °C/hour)
 - CD reactivity rate: ~+/-1.4 cents/min
Postulated Accident Conditions: UTOP at HFP, w/ Stirling engines

- **Unprotected Transient Overpower**
 - Step reactivity insertion (0.4$) \rightarrow 1 CD out from critical position to the mechanical stops
 - No SCRAM
 - Stirling engines on \rightarrow maximize energy release to the fuel
 - Reactor power peaks $\sim 3.74 \ \text{P}_{\text{NOM}}$ (318 kW) at $t = 12$ s
 - Negative reactivity feedbacks counters the power surge \rightarrow system back to a steady higher power and higher temperature by $t = \sim 20$ min
 - **No safety concerns** until scram (not needed)
Postulated Accident Conditions: UTOP at HFP, w/o Stirling engines

- **Unprotected Transient Overpower**
 - Step reactivity insertion (0.4$) \rightarrow 1 CD out from critical position to the mechanical stops
 - No SCRAM
 - Stirling engines off \rightarrow maximize PCS temperature and pressure
 - Used for ASME D-section calculations
 - **No safety concerns** until scram (not needed)
Postulated Accident Conditions: UTOP at CZP

- **Unprotected Transient Overpower at Cold Zero Power (20 °C)**
 - Step reactivity insertion (1.3%) \rightarrow 1 CD out from critical position to the mechanical stops
 - No SCRAM
 - Reactor power peaks ~34 P_{NOM} (2.9 MW) at $t = 2$ s
 - Negative reactivity feedbacks counters the power surge
 - **No safety concerns** during first 5 minutes, reasonably also later
 - Temperatures stay safely low
 - Fast temperature ramp rate (~ 11 °C/min), but max PCS temperature < 200 °C
Postulated Accident Conditions: ULOHS

- **Unprotected Loss of Heat Sink**
 - All 4 Stirling engines heat removal lost at \(t = 1.0 \text{ s} \)
 - No SCRAM
 - Reactor cooled only by heat losses through guard vessel only (~4.8 kW) → conservative assumption
 - Reactor shutdown by intrinsic negative reactivity
 - Return to power caused by fuel cooldown
 - Core power < guard vessel heat losses for first 24 hr
 - **No safety concerns** during at least first 24 hr
 - Beyond 24 hr, reactor power = heat losses (new equilibrium)
Postulated Accident Conditions: ULOF

- **Unprotected Loss of Flow**
 - Total blockage of all 4 downcomers at time $t = 0.0$ s (assume catastrophic damage of all 4 IHXs) →
 - not credible event
 - bounding partial loss of flow events
 - no SCRAM
 - Loss of secondary side (IHX) heat removal capabilities
 - Reactor cooled *only* by heat losses through guard vessel
 - Reactor power self-reduced
 - Hot spot clad temperature not of safety concern due to the reactor self shut-down features
 - **No safety concerns**: data shown for the first 24 hrs, beyond that reactor power = heat losses (new equilibrium)

![Core mass flow](image1)
![Hot spot temperature](image2)
![PCS & guard vessel temperatures](image3)
Postulated Accident Conditions: ULOF, no DHRAC

- Unprotected Loss of Flow and blockage of Decay Heat Removal Air Channel (DHRAC)
 - Loss of secondary side (IHX) heat removal capabilities
 - Total loss of cooling
 - Reactor power self-reduced
 - Hot spot clad temperature not of safety concern due to the reactor self shut-down features
 - No safety concerns for the first 24 hrs

Be and BeO temperatures
System pressures
PCS & guard vessel temperatures
Reactor power & heat losses
Reactivity
Temperature safety margins
Postulated Accident Conditions: ULOCA

- **Unprotected Loss of Coolant Accident**
 - MARVEL reactor avoids by-design the NaK level drop below the top of the core (core never uncovered) also during the break of the low-elevation components (downcomer, lower plenum)
 - Decay heat removal capabilities bounded by ULOF calculations
Summary

- RELAP5-3D system analysis shows reliable and stable MARVEL performances during operational transients and selected BEU transients
- **Very conservative** accident analysis shows that all **minimum safety margins are > 0**

<table>
<thead>
<tr>
<th>Transient</th>
<th>Minimum margins (°C)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Clad</td>
<td>Fuel centerline</td>
</tr>
<tr>
<td>UTOP- HFP</td>
<td>18</td>
<td>201</td>
</tr>
<tr>
<td>UTOP - CZP</td>
<td>470</td>
<td>620</td>
</tr>
<tr>
<td>ULOHS</td>
<td>118</td>
<td>291</td>
</tr>
<tr>
<td>ULOF</td>
<td>9</td>
<td>190</td>
</tr>
</tbody>
</table>
Questions?