Experiments for Modeling and Validation of Liquid-Metal Heat Pipe Simulation Tools for Micro-Reactor

NEUP Project 20-19735

Prof. Yassin Hassan | Texas A&M University

NEUP Program

Experiments for Modeling and Validation of Liquid-Metal Heat Pipe Simulation Tools for Micro-Reactors

March 09, 2023 **Yassin. A. Hassan** | Texas A&M University **Joseph Seo** | Texas A&M University **Hansol Kim** | Texas A&M University **Mark Anderson** | University of Wisconsin-Madison (Collaborator)

Overview of the Project

- The heat pipe is a device of very high conductance
- It works passively on the principle of evaporation and condensation of a working fluid so that it can transfer large amount of heat.
- Intensive studies to apply the heat pipe as a primary heat transfer system of the micro-reactor have been pursued.

Single heat pipe test facility (SPHERE) in the experimental station in INL.

Spacecraft

Computer

Spacecraft, heat pipes in computer, Alaska pipeline support legs cooled by heat pipe thermosyphons to keep permafrost frozen.

From: Heat pipe – Wikipedia and wall.alphacoders.com

Design of e-Vinci from Westinghouse

eBlock37, L.M. Gaspar et al., eBlock37 Microreactor Electrical Demonstration Unit, Nuclear Technology (2022)

Overview of the Project

Purpose: The proposed work aims to produce high-fidelity liquidmetal heat-pipe experimental data for the validation of the simulation tool, Sockeye, through both single heat-pipe and integrated heatpipe experiments.

- Objectives:
- Single Heat-Pipe Hydraulic Experiment
- Measurements of the hydraulic resistance for validation / development of wall friction, wick friction/form loss models.
- Single Liquid-Metal Heat-Pipe Experiment
- Measurements of internal temperature, pressure, and phase distribution for validation/development of heat transfer and flow models in Sockeye.
- Multiple Liquid-Metal Heat-Pipes Experiment in Hexagonal Arrangement
- Investigate the integrated system performance under various operational scenarios such as partial failure of constituent heat pipes and non-uniform cooling heating.

Heat Pipe Visualization Experimental Setup

- Visualization using high speed camera and IR camera is conducted.
- Temperature measurement using fiber optical sensor and IR camera is implemented.
- Confocal Chromatic Sensor (CCS) is applied to measure the liquid film behavior.
- 4 pneumatic cylinders were added to adjust inclination angle.

Confocal Chromatic Sensor Measurement

CCS Measurement & High-Speed Images

Boiling Pattern Inside Heat Pipe – Half Wick Exp

Heat Pipe Visualization with Inclination Angle

- Visualization of the heat pipe with different inclination angle.
- Temperature measurement using fiber optical sensor and IR camera is implemented.
- Two high-speed camera was set (bottom side and top side)

Heat Pipe Visualization Results – Inclination Effect

Heat Pipe Visualization (Vertical with Varying Power) - Evaporator

Microreactor Program

Heat Pipe Visualization (Vertical with Varying Power) – Adiabatic Region

Microreactor Program

Film Thickness Measurement

0.15 Measured Value (mm) 4 Time (s) 2 3 5 ÷. 7 0 6 Cross-Correlation 0.15 Mcasured Value (mm) 52.4 mm 2 3 5 7 0 I 4 6 Adiabatic Evap Time (s)

Heat Pipe Visualization Results – Horizontal Effect (Gravity)

Heat Pipe Visualization Results – Operating Limitation

45°inclination angle

le Operating limitation achieved after sudden increase of power from 400W to 500W (~15s after the power increase)

Horizontal orientation (0° inclination angle) Operating limitation achieved after sudden increase of power from 50W to 100W (~ 30s after the power increase)

<complex-block>

45

Distributed Temperature Sensing (DTS)

Distributed Temperature Sensing (DTS)

Effective Condenser Length

 $L_{eff} = 0.5L_{E} + L_{A} + 0.5L_{C}$

The dependency of the effective condenser length on the cooling condition was investigated by leveraging DTS.

Construction of Sodium Heat Pipe

Sodium Heat Pipe Preliminary Experimental Facility

Sodium Heat Pipe Preliminary Experiments

Thank you

