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Overview

1. Fuel Performance Assessment Status Update
2. Background – Historical Experiences with U-ZrHx Fuel
3. Fuel Element Properties, Effects, and Relationships
4. Results - Marvel Fuel Element Performance Analysis Under 

Extreme Conditions
5. Conclusions and Future Work
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MARVEL Fuel Performance Assessment Status Update
1. Establish fuel element properties, behavior, and quantitative thermophysical relationships 

(relevant reports, NUREGs, publications, etc.)
− Complete, Spring 2022

2. Fuel performance analysis during beyond design basis accident (BDBA)
− Determine fuel element hermeticity, stability/predictability of geometry, and mechanical 

integrity under equilibrium (steady state) BDBA conditions
− For all variables/uncertainties, assume least favorable conditions for conservatism
− Complete, Spring 2022

3. Produce fuel performance assessment report of Steps #1 and #2 (per NUREG-1537)
− Rev.1 Complete, Summer 2022

4. Develop capability to perform high fidelity fuel performance computational modeling of MARVEL 
fuel using BISON
− Complete, Summer 2022

5. Simulate MARVEL fuel performance using BISON to check calculations from Step #2
− Complete, Summer 2022
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MARVEL Fuel Qualification Strategy

MARVEL fuel qualification strategy follows NUREG-1537 (Guidelines for 
Guidelines for Preparing and Reviewing Applications for the Licensing of 
Non-Power Reactors) guidelines

• Describe history of fuel type (previous tests, qualifications, etc.)
• Describe geometries, composition, thermophysical properties, etc.
• Describe irradiation performance relationships
• Determine operational limits
• Assess risk of reaching performance limits

• Our strategy -- analyze fuel performance under the most extreme 
“bounding case” conditions

• Information and analyses “should be current”
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MARVEL Fuel Selection and Background



Background – MARVEL Fuel Selection

• Selecting materials that are already 
known/developed/licensed and commercially 
available facilitates rapid design, assessment, and 
construction of the MARVEL reactor

• The 304 SS-clad U-ZrHx fuel system has been 
selected for MARVEL (aka “TRIGA” fuel)

• Fuel will be fabricated and purchased from TRIGA 
International
− Same materials, same fabrication processes, etc.

• Qualified and licensed by US NRC for (and still used 
in) TRIGA reactors since the 1950s

• Used previously in several NASA reactors
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[1] History, Development and Future of TRIGA Research Reactors, International 
Atomic Energy Agency, Vienna, 2016. 



Background – The MARVEL Fuel Element
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• (5x) Annular U-ZrH1.6 Fuel Pellets
• 30 wt% uranium
• 19.75% enrichment
• No erbium or samarium BAs

• (2x) Graphite neutron reflectors
• (1x) Mo diffusion barrier disc
• Axial zirconium rod
• 304 SS cladding
• Top and bottom 304 SS end plugs
• Ambient air gas gap
• Fuel meat contains fissile and neutron-moderating species
• Excellent chemical stability in water (TRIGA reactor coolant… 

we’ll discuss NaK in a moment…)
• High fission product retentivity and high-temperature stability
• Fuel meat and cladding retain integrity under large reactivity 

insertions and frequent power cycling

[1] History, Development 
and Future of TRIGA 
Research Reactors, 
International Atomic Energy 
Agency, Vienna, 2016. 



NUREG-1282: Fuel Limits in TRIGA Reactors

• TRIGA fuel limits described in NUREG-1282 [1]
− The safety limits of the standard TRIGA element are dominated by overpressurization of 

gas inside the element (vide infra)
− For rapid transients (ex. reactor pulses), fuel meat temp of 1150 °C precludes loss of 

cladding integrity
− For extended transients (cladding temp reaches steady state), fuel meat temp of 950 °C

precludes loss of cladding integrity
• Note: Recommended temperature limits lower than 950 °C can be found in literature, but 

those are for different systems/conditions (ex. PWRs, higher fission rates, coolant pressure, 
etc.) [2,3]
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[1] Safety Evaluation Report on High-Uranium Content, Low-Enriched Uranium-Zirconium Hydride Fuels for TRIGA Reactors, NUREG-
1282, U.S. Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation, (1987).
[2] D. Olander, E. Greenspan, H.D. Garkisch, B. Petrovic, Uranium-zirconium hydride fuel properties, Nucl Eng Des 239(8) (2009) 1406-
1424.
[3] D.R. Olander, M. Ng, Hydride fuel behavior in LWRs, J Nucl Mater 346(2-3) (2005) 98-108.



Background – Space Nuclear Auxiliary Power (SNAP) Program

• NASA’s SNAP 
program developed 
nuclear reactors and 
RTGs for space 
missions in the 
1950s and 1960s

• Post-irradiation 
examination 
following the SNAP-
10A “extended BDBA 
test” (conditions held 
for 10,000 hours) 
showed no evidence 
of incipient failure
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[1] H. Dieckamp, Nuclear Space Power Systems, Atomics International, Canoga Park, 
California, 1967. 

MARVEL SNAP-10A
Fuel Type U-ZrH U-ZrH

wt% U 30 10
Enrichment (%) 19.75 93

Gas gap Air (1 atm) He (0.1 atm)
Cladding 304 SS Hastelloy-N a

# Fuel Elements 36 37
Coolant NaK NaK

Fuel Temp (°C) 565 585
Power (kWth) 85 34

Control BeO + poison Be wedges

(a) Included a thin film (internal, 2-4 mils thick) of 
Solaramic (glassy coating BA)
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MARVEL Fuel Properties and Performance



A Few Fuel Performance Phenomena to Consider
• Hydrogen redistribution and dissociation (fuel)
• Internal gas pressure

− From as-fabricated air in gas gap, fission gas, hydrogen
• Coolant-cladding corrosion
• Oxygen interactions (with fission products, with graphite, coolant impurity)
• Geometry changes (Zr rod, fuel meat, cladding, and graphite reflectors)

− Thermal expansion (all), fission/void growth (fuel), hydrogen expansion (fuel), 
radiation-induced swelling (all), radiation-enhanced creep (all)

• Radiation effects
− Hardening, embrittlement, etc.

• Fuel-cladding mechanical interactions (FCMI)
• Fuel-cladding chemical interactions (FCCI)
• Hydrogen embrittlement (cladding)
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MARVEL Cladding Compatibility with Hot NaK Coolant

• 304L SS was used as cladding in EBR 
program

• Corrosion rates are strongly dependent 
upon salt impurity content (as well as 
temperature and flow rate)

• Corrosion is characterized by rapid, brief, 
selective dissolution followed by slower 
steady state corrosion

• For conservatism, the forthcoming 
analysis assumes a constant cladding 
corrosion rate of 4 mils/yr (high O 
impurity)
− 1 mil = 25.4 μm
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[1] M. Romedenne, B. Pint, Corrosion in Sodium Fast Reactors, 
ORNL/ SPR-2020/1580, Oak Ridge National Laboratory, 2021.

[1]

Corrosion rates of 304 SS in high-
velocity sodium at 760 °C



MARVEL Fuel Meat Compatibility with Hot NaK Coolant
• High temp ZrH, U, and δ-U-ZrH compatibility tests in NaK were performed in the 

1950s during the SNAP program
• Fuels were irradiated, then submerged in hot NaK
• No physical changes or release of radioactive species were detected in NaK up to 

~540 °C
• Above 540 °C, a visibly apparent black/brown surface film manifests on the fuel meat
• Far above 540 °C, surface dissolution occurs on the order of a few mils/month
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[1] J. Vetrano, Delta-Phase Zirconium Hydride as a Solid Moderator, BMI-1243, Battelle Memorial Institute, Columbus, Ohio, 1957.
[2] J. Katz, E. Rabinowitch, The Chemistry of Uranium, p. 177, Division VIII, Vol. 5, National Nuclear Energy Series, McGraw-Hill Book 
Company, Inc., New York, 1951.
[3] T.B. Douglas, A Cryoscopic Study of the Solubility of Uranium in Liquid Sodium at 97.8-Degrees-C, J Res Nat Bur Stand 52(5) (1954) 
223-226.
[4] J. Stang, E. Simons, J. DeMastry, J. Genco, Compatibility of Liquid and Vapor Alkali Metals with Construction Materials, DMIC 
Report 227, Battelle Memorial Institute. Defense Metals Information Center, Columbus, Ohio, 1966.



MARVEL Fuel Meat Microstructure
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• Microstructure 
of 30 wt% U-
ZrH1.6
confirmed

• Uranium micro-
particles 
embedded in 
ZrH matrix

[1] D. Keiser, Jr., E. Perez, J. Jue, F. Rice, E. Woolstenhulme, Microstructural 
Characterization of Uranium Zirconium Hydride Fuel in an As-Fabricated 
TRIGA Fuel Element, J Nucl Mater. In Review.



U-ZrHx Thermophysical Properties
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x

• Peak U-ZrH1.6 fuel 
temperature during 
BDBA 680 °C (953 K)

• Matrix remains δ-phase
• Geometry is stable 

and predictable
• Design limits are based 

on cladding stability

[1] D. Olander, E. Greenspan, H.D. Garkisch, B. Petrovic, Uranium-zirconium 
hydride fuel properties, Nucl Eng Des 239(8) (2009) 1406-1424. 

680 °C



MARVEL Fuel Element Limits – Cladding Stresses
• We define the MARVEL fuel 

design limit as the 
conditions in which 
unrecoverable structural 
deformation occurs to the 
cladding

• This occurs when the hoop 
stress reaches the 
material’s yield stress:

• Hoop stress calculated 
using Barlow’s formula

• Each variable is a function 
of burnup/radiation 
damage, temperature, 
temperature distribution, 
corrosion, etc.
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Fuel Element Internal Gas Gap Pressure

• Air

• Fission gas
− Produced
− Released

• Hydrogen Dissociation…
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[1] M. Tonks, D. Andersson, R. Devanathan, R. Dubourg, A. El-Azab, M. Freyss, F. Iglesias, K. Kulacsy, G. 
Pastore, S.R. Phillpot, M. Welland, Unit mechanisms of fission gas release: Current understanding and future 
needs, J Nucl Mater 504 (2018) 300-317.
[2] M.T. Simnad, F.C. Foushee, G.B. West, Fuel Elements for Pulsed TRIGA Research Reactors, Nucl Technol 
28(1) (1976) 31-56.  



Hydrogen Dissociation

U-ZrHx
Fuel Meat

H

H

• Hydrogen is constantly dissociating (escaping) and 
re-entering the fuel meat

• Dissociated hydrogen enters the gas gap, 
increasing internal pressure

• Steady state equilibrium occurs when the 
hydrogen escape rate equals the hydrogen 
reabsorption rate

• Hydrogen dissociation dynamics are defined by
• Temperature
• Hydrogen concentration in the gas gap

• i.e., hydrogen gas pressure
• Hydrogen concentration at fuel meat surface

• i.e., H/Zr ratio (x) 



Hydrogen Dissociation Equilibria
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Hydrogen Dissociation Equilibria
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H/Zr ratio at the fuel 
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Radial Hydrogen Redistribution – Steady State 
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Hydrogen Redistribution – How Long Does it Take?
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Exact solution requires solving the multi-dimensional 
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It can be solved numerically via a 
finite difference method…
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Under steady state MARVEL conditions…
tradial ≈ 2.3 months
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Ds = diffusion coefficient
ρZr = mass-density of zirconium 
MZr = atomic weight of Zr 
TQ = heat of transport of H in ZrHx
S(i) = area of the inner surface of the ith shell (cm2)
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BDBA Analysis Input Parameters
• Fission rate = 2.363·1011 fis·cm-3·s-1

• 304 SS damage rate = 5.01·10-9 dpa·s-1

• Coolant-cladding corrosion rate = 4 mils·yr-1 (vide infra)
• Peak fuel meat temp during BDBA = 680 °C
• Fuel meat surface temp during BDBA = 664 °C

− Assume cladding and graphite have time to reach equilibrium
• Effective full-power years (EFPY) = 2

− Burnup = 2.5 MWd⸱kgU-1

− Uranium consumed = 0.27%
− U235 consumed = 1.39%

• Fuel meat oxygen impurity content = 1400 ppmwt
− In the form of ZrO2 (in fresh fuel)
− Per ASTM B349/B349M – 16
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Peak values 
chosen for 

conservatism 



MARVEL Fuel Performance– Results

• Strains (for all materials) are dominated by thermal expansion
• Gas gap gets smaller at higher temps/burnups but remains open

−No FCMI
• Peak hoop stress is much less than yield
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Parameter BOL EOL
BU (MWd⸱kgU-1) 0 2.5
U Consumed (%) 0 0.27

U235 Consumed (%) 0 1.39
Peak 304 SS Dmg (dpa) 0 0.32
304 SS Corrosion (mm) 0 0.2

Fuel Tpeak (°C) 680 680
BDBA Peak Hoop Stress (MPa) 5 9

304 SS σy (MPa) 130 190

Conservative Scenario



MARVEL Fuel Performance Verification in BISON
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BISON simulation of hoop stress during BDBA 
is in good agreement with hand calculations



Conclusions (and Future Work)

• Fuel system qualification is based on NUREG-1537 guidance
• Risk of damage to the fuel element under bounding scenario conditions has 

been analyzed
• This fuel system is qualified for use in the MARVEL reactor because:

− MARVEL fuel element behavior is understood
− Maintains structural integrity, geometric stability, and behavior is stable and

predictable under bounding BDBA conditions
− Bounding BDBA conditions (burnup, radiation damage, temperatures, and 

pressures, etc.) are well below the damage limits of the fuel element

• Publications highlighting results and new BISON capability
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