Pacific
Northwest
national Laboratory
Microreactor
Transportation Emergency Planning Challenges

Steven J. Maheras
 Shane A. Foss
 Ryanne E. Reed

DOE-NE Microreactor Program Winter
Review Meeting
March 5-6, 2024

ENERGY BATIELIE

PNNL is operated by Battelle for the U.S. Department of Energy

Rf
Pacific Northwest NATIONAL LABORATORY

Microreactor Transportation Emergency Planning Challenges - Accomplishments

- Microreactor Transportation Emergency Planning Challenges - September 2023
- Microreactor transportation presentations and panels
- Waste Management Conference, February 26-March 2, 2023, Phoenix, Arizona
- Transportation Core Group Meeting, March 7-8, 2023, Washington, DC
- National Transportation Stakeholders Forum Meeting, May 22-25, 2023, St. Louis, Missouri
- Transportation Core Group Meeting, September 6-7, 2023, Prairie Island Indian Community, Red Wing, Minnesota
- Western Interstate Energy Board, November 8-9, 2023, Idaho Falls, Idaho
- INMM 37 th Spent Fuel Management Seminar, January 17-18, 2024, Alexandria, Virginia

FY2024 Activities

- Revising Microreactor Transportation Emergency Planning Challenges Report
- M3 milestone (due 09/30/2024) funded from FY2023 carryover
- Microreactor Panel at Waste Management 2024 Conference, March 10-15, 2024
- National Transportation Stakeholders Forum Meeting, June 3-6, 2024
- IAEA Spent Fuel Management Conference, June 10-14, 2024

Collaboration Activities

Northwest
national laboratory

- Working closely with the DoD Strategic Capabilities Office (SCO)
- Project Pele
- Presented risk-informed transportation package approval methodology to NRC Advisory Committee on Reactor Safeguards (ACRS)
\checkmark ACRS Subcommittee - November 17, 2023
\checkmark Full ACRS - December 6, 2023
\checkmark Endorsement of methodology by NRC expected Q2 FY2024
- Working closely with Army Reactor Office (ARO) and the Army Office of the Chief of Engineers (OCE)
- Working closely with NRIC on maritime transport of microreactors

Microreactor Transportation

- Current microreactor concepts are to transport the microreactor containing its unirradiated or irradiated fuel
- A microreactor with its unirradiated or irradiated contents is unlikely to meet the entire suite of NRC regulatory requirements in 10 CFR Part 71
- A risk-informed process will likely be used for NRC transportation package approval

Source: GAO. | GAO-20-380SP

- Demonstrate equivalent safety and that risk to the public is low
- This will probably require the use of compensatory measures

Current Transportation Approach

national laboratory

- The microreactor shipment would be a commercial shipment and would receive transportation package approval from the NRC using a risk-informed process
- Strategy is Crawl-Walk-Run
- Concentrate on highway transport first
- Then other surface modes (rail and barge/ship) - evaluation of transport by vessel has just started
- Finally air transport
- The microreactor containing its irradiated fuel would contain a highway route-controlled quantity of radioactive material (i.e., > $3000 \mathrm{~A}_{2}$)
- For truck shipments this means that a CVSA Level VI inspection and safety permit would be required (see 49 CFR 385 and 49 CFR 397)
- For rail shipments this means that the transportation planning requirements in 49 CFR 172.820 would apply
- The microreactor would be fueled by LEU or HALEU (not HEU)
- For rail shipments, transport would be via Association of American Railroads (AAR) Standard S-2043 railcars

Areas Examined In Identifying Microreactor Transportation Emergency Planning Challenges

Pacific
Northwest

- Assignment of Responsibility
- Emergency Response Organization
- Emergency Response Support and Resources
- Emergency Classification System
- Notification Methods and Procedures - Recovery, Reentry, and Post-
- Emergency Communications
- Public Education and Information
- Emergency Facilities and Equipment

Accident Operations

- Accident Assessment
- Protective Response
- Radiological Exposure Control
- Medical and Public Health Support
- Exercises and Drills
- Radiological Emergency Response Training
- Responsibility for the Planning Effort: Development, Periodic Review, and Distribution of Emergency Plans

Results of Evaluation

- Microreactor transportation emergency planning challenges organized into cross-cutting challenges and specific transportation emergency response challenges
- This presentation will discuss several cross-cutting transportation emergency planning challenges
- Use of hazardous materials in microreactor designs
- Revisions to the DOT Emergency Response Guidebook
- Potential compensatory measures
- External Engagement, Emergency Response Training, and Accident Recovery Plans
- Discussions with States and Tribes also discussed

Pacific

Use of Hazardous Materials in Microreactor Designs

- Beryllium-containing materials are currently being investigated for use in microreactors as replacements for graphite as a neutron moderator (Cheng et al., 2022)
- Beryllium is a hazardous material and if these beryllium-containing materials were incorporated into a microreactor, the presence of these materials would have to be considered in the transportation emergency response planning for these specific microreactors
- Sodium-containing heat pipes are being investigated for use in some microreactors, such as the Westinghouse eVinci microreactor
- Sodium is a hazardous material and the presence of sodium would have to be considered in the transportation emergency response planning for these microreactors, specifically in two areas:
- The ability of sodium in combination with water to exacerbate releases of radioactive material during a transportation accident, and
- The need to modify transportation accident fire-fighting guidelines if sodium was present

[^0]Pacific
Northwest
national Laboratory

- The DOT Pipeline and Hazardous Materials Safety Administration ERG provides first responders with a manual to help deal with hazardous materials transportation accidents during the critical first 30 minutes after the accident
- Emergency responders are trained to use the shipping papers, numbered placard, or orange panel number to determine which emergency response guide to use in responding to the accident
- The emergency response guides were not developed based on transportation accidents involving microreactors containing irradiated fuel
- The ERG would have to be expanded to include a guide that is specific to microreactor transportation accidents

- The guide may have to be fuel-type specific because of the differences in potential releases from different microreactor fuel types
- The guide may also have to be modified to account for the presence of hazardous materials such as beryllium or sodium
- Microreactors containing irradiated fuel shipped by highway would be highway route-controlled quantities (HRCQ) (>3000 A_{2}) shipments and would need to meet the routing requirements in 49 CFR Part 397
- The use of interstates, beltways around cities, state identified preferred routes could be considered as compensatory measures
- Microreactors will likely be overweight/overdimension and will require state permitting when transported by highway
- Specific heavy haul truck or superload permit requirements could be considered as compensatory measures

Other Potential Compensatory Measures

- Other potential compensatory measures include:
- Increased exclusion zone around the microreactor because of possible radiation dose rate increase
- Real time health/fitness onboard monitoring/diagnostics of reactor package
- Escorting of the reactor forward and aft for the entire route
- Rolling road closures
- Travel at reduced speeds
- Choosing a route that avoids bodies of water (balanced by quality of road)
- Controls for bridges over bodies of water (bridge inspection, speed reduction, close bridge to other traffic)
- Judicious use of time-of-day and day-of-week restrictions
- Avoid shipping during severe weather
- Conduct training for emergency responders along the route
- It is likely that NRC microreactor transportation package approval would be conducted using a risk-informed process and the microreactor containing irradiated fuel may not meet the $10 \mathrm{mrem} / \mathrm{hr}$ at 2 meters from the conveyance dose rate limit contained in 49 CFR 173.441 and 10 CFR 71.47
- As a result, the microreactor may require a stand-off distance of approximately 30 meters to obtain a dose rate of $10 \mathrm{mrem} / \mathrm{hr}$, depending on the amount of shielding and storage time
- This could have implications for transportation emergency response planning if external package dose rates keep responders and recovery crews from meeting necessary objectives for recovery and mitigation

Northwest

External Engagement, Emergency Response Training, and Accident Recovery Plans

- Conducting external engagement prior to transporting a microreactor containing its irradiated fuel
- A microreactor containing its irradiated fuel has not been shipped in the U.S., and State and Tribal emergency responders along potential routes are likely to be unfamiliar with microreactor transport

- This engagement could take 2 to 3 years
- Potential need to conduct emergency response training along transport routes
- Potential need to develop transportation accident recovery plans

Pacific

Discussions with States and Tribes

Northwest

- In general, the transportation emergency response community is not familiar with microreactors or the concept of transporting a microreactor containing its irradiated fuel
- The purpose of the discussions was to obtain State and Tribal perspectives on the potential emergency planning challenges associated with the transportation of a microreactor containing its irradiated fuel

- The challenges may differ from shipments of spent nuclear fuel in Type B transportation casks (the current paradigm)
- Some challenges are likely to be mode-specific (i.e., different for shipment by truck, rail, air, and vessel)
- Some challenges will be design-specific, e.g., presence of other hazardous materials

[^0]: Source: Cheng B., E. M. Duchnowski, D. J. Sprouster, L. L. Snead, N. R. Brown, and J. R. Trelewicz. 2022. "Ceramic Composite Moderators as Replacements for Graphite in High Temperature Microreactors." Journal of Nuclear Materials. Volume 563.

