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Project Purpose:

To quantify the opportunities and challenges of operating micro-reactors in populated,
decentralized power generation environments and the potential for deployment in established

micro-grids with diverse power generation sources.

Project Objectives:
1) Develop integrated system modeling of micro-reactor applications.
2) Incorporate available data to validate modeling.
3) Simulate normal and bounding events.
4) Determine economic performance requirements across applications.
5) Identify operational requirements and opportunities across applications.
6) Determine the scalability of microreactor deployment at campuses and other existing microgrids.
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Project Outcomes:

1. Detailed analysis of the market potential for micro-reactors in existing microgrids

2. Expansion of the Modelica-based hybrid energy system modeling to include the existing well-characterized environment of
a functioning microgrid with diverse energy generation and dispatch portfolio,

Economic target for microreactors deployed as electricity producers, thermal energy producers, and hydrogen producers,
4. ldentification of specific economic and technical opportunities to guide technology development efforts,

Foundational training of the next generation of nuclear engineers in the critical path for the wide adoption of clean, safe,
reliable nuclear power.

Application 1: Micro-reactor in an energy diverse Application 2: Micro-reactor for high-performance
micro-grid computing
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Overview of UIUC Microgrid
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Overview of UIUC Microgrid

e 2019 UIUC emission sources:

.l Emissions Campus Energy
Scope Scope Definition (MTCO2e; %) Source %

Emissions progluc‘ed 195,459: )

1 on campus within 45 1% 80%
UIUC control =7

Emissions from 183,595; 50%

purchased electricity 42.3% °

s camm ey | 5473 /A
> i 12.6%

activities

*Calculated from fuel consumption
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Overview of UIUC Abbott Power Plant
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Approach — Microgrid Modeling

 Main idea: Create a simplified model of the microgrid to provide information
on the minutes scale and perturb component parameters and configurations

to obtain optimal solution

* Simplified in terms of variables used
e E.g. For electrical grid: MW and MWhr for power and energy exchange

instead of the more fundamental variables (Volt, Ampere, Hertz)
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3. It sends request
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Microgrid Model
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Microgrid Model

With a sufficiently accurate model, we can determine:
i. Demand, based on environmental variables such as temperature, time of year, etc.
ii. Supply behavior, in response to demand and other internal system complexities
such as cogeneration.
iii. Tally total demand & supply, fuel usage, costs, greenhouse gas emissions, etc.
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Overview of Subtasks 2.1 and 2.3 Results

Task 2.1: Use of microreactor solely for electricity generation in an energy-diverse UIUC
microgrid.

e Task 2.3: Use of microreactor for steam (and electricity) generation with a focus on
heating and cooling.

Application 1: Micro-reactor in an energy diverse Application 2: Micro-reactor for high-performance
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Select Key Scenarios From Subtasks 2.1 and 2.3

Cost Emissions
Task Configuration Savings! Reduction Key Findings
[SM/y]  [MTCO2/y]
Baseload CT UIUC: 0 e (Ts baseload while uR+MSS provides load-following
with load- 1.98 Grid: 28.4 e PR+MSS helps to condition power by reducing fluctuations and provide
2.1: Electricity following uR Total: 28.4 some electricity arbitrage
Generation ) ) o )
(5 MW) Baseload uR UlUC: 11.3 : goRn?Zseelrfw?sfjs?o\?/\:hrclec:jaudc-':icc))lLovg:lg I(Ce:stocg:tmsrz\llziz f(s)stsjlllJiu:(I)ulsjv%/Zr export of
with load-  1.10  Grid: 9.0 oxcess clecuricity 8 P
following CT Total: 20.3 e Resistant against increase in natural gas prices, esp. above $3.86/MMBTU
UIUC: 25.1 e UR retrofitted onto existing coal boiler in APP to produce boiler steam
Boiler Retrofit  1.45 Grid.- 1 2 e Relegates production to APP using existing APP infrastructure
2.3: Steam & ' Total-'2€.5 5 C 1.9 MW, + 36.8 kPPH steam, or throttle up to
Electricity for e 3.7 MW, + 0 kPPH steam (condensing mode)
|
o UIUC: 24.1 e STG exhaust as 50 psi steam for campus heating

(15 MwW,,) Cogeneration

50 psi with MSS 1.60 Grid: 4.3 e MSS enables load-following

Total: 28.4 e 2.3 MW, + 35.3 kPPH steam

1Cost savings refer to the reduction in electricity and fuel expenses as compared to the current UIUC microgrid without a
microreactor.
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Some Key Takeaways From Subtasks 2.1 and 2.3 Results

* Ideal microreactor deployment approach depends on the specific goal and scenarios

E.g., If reduction of local emissions is a priority, then cogeneration is better than sole electricity
generation which only offset grid emissions.
E.g., If existing infrastructure is available, then retrofit may be better than cogeneration due to

cost and complexity reduction.

*  Potential cost reduction from a microreactor is highly dependent on price of electricity
and the fuel it replaces (i.e. natural gas). In the simulated period, the average electricity
price was about $25/MWh and $2.87/MMBTU for gas.

The prices have increased significantly over the years and would result in much greater
cost reduction for present microreactor deployments.

* Asthe electricity grid shifts towards clean energy sources, the focus would be on
reducing local emissions generation.
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Load-Conditioning and Electricity Arbitrage by MSS

* Load-conditioning by the Molten Salt Storage (MSS) system attempts to smooth the
electrical load which is important for achieving a self-reliant microgrid.

e Electricity arbitrage by the MSS allows additional cost reduction by charging the MSS
during periods of low electricity prices and discharging during periods with high prices.
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Load-Conditioning and Electricity Arbitrage by MSS

* Load-conditioning and electricity arbitrage provide small amounts of energy cost savings
(S60k/y and S90k/y, respectively) as compared to the energy cost savings by the
microreactor itself (51.9M/y).

* However, besides market based optimization, an MSS can provide value through other
aspects as well:

1. An MSS system can decouple the demand load variation from the microreactor
neutronics by providing buffer to the load variation. This reduces the number and
frequency of control rods maneuvers

2.  An MSS system can enhance the short term load-following capability of a
microreactor-MSS system.

3. An MSS system can serve as a heat reservoir in removing decay heat during SCRAM.
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Overview of Subtask 2.2

* Task 2.2: Use of microreactor for High-Performance Computing (HPC).
* HPCis an energy intensive but high-value application.

Application 1: Micro-reactor in an energy diverse Application 2: Micro-reactor for high-performance
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Key Results from Subtask 2.2
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*  HPC has very high load variation, requiring up to around 4 MW_/min of ramping.
* Energy storage devices (MSS, batteries, flywheels) needed for load-following.
»  Storage capacity reduced by 2 orders of magnitude if uR can ramp at just 0.3 MWe/min.
*  Microreactor designs can greatly enhance versatility and expand use cases by including
some load-following capability.
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Overview of Subtask 2.4

 Task 2.4: Use of microreactor for hydrogen production.
* Task explored the pairing of a microreactor with low-temperature electrolysis (LTE),
high-temperature electrolysis (HTE), and Steam-Methane Reforming (SMR)
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Key Results from Subtask 2.4

Production Yearly H, Production  Emissions Reduction Emission Reduction Coefficient
Method [103 Tonnes/y] [MTCO,/y] [MTCO,/MWh_-equivalent]
LTE 0.93 16.63 0.379
HTE 1.08 19.15 0.437
NGR 4.63 55.21 1.261

 LTE and HTE provide less emissions reduction than if the electricity input was used to offset grid
electricity usage (emission coefficient 0.65 MTCO,/MWh,)

* NGR has process emissions, but the significantly larger production makes for the biggest
reduction in emissions

 Hydrogen is a more valuable commodity compared to electricity, provided a demand is available

* All systems are able to fulfill the fueling needs and produce additional hydrogen for sale or
export electricity to the grid

* Significant losses in hydrogen yield for transportation occur due to the compression to 700 bar

E Nuclear, Plasma and Radiological Engineering,

University of lllinois at Urbana-Champaign




Stand-alone Hydrogen Systems
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* Hydrogen provides a high-value commodity that can help pay off the principal loans required
for first-of-a-kind microreactors

* NGR systems are more economically competitive than HTE, with the ability to meet available
cost estimates with a 20 year pay-off period

* Tax credits in the Inflation Reduction Act of 2022 provide limited support for the economic
viability of hydrogen generating systems
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Summary and Conclusion

* A modular modeling framework was developed to simulate the impact of a
microreactor deployment within the UIUC microgrid.
The modeling approach can be extended to other similar microgrids.

* The project explored four main applications for microreactor deployment:
1. uGrid Electricity Generation 2. Steam & Electricity for Heating/Cooling
3. Generation for High-Value HPC 4. Production of Hydrogen

*  The optimal microreactor configuration depends on the specific application
* Inall cases, a microreactor:

1. Reduces emissions 2. Enhance resiliency from external factors
3. Could provide process heat, thereby expanding range of possible products
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