





Molten Salt Reactor P R O G R A M

### LIBS for Elemental Monitoring of MSR Off-Gas Streams

Hunter B. Andrews Oak Ridge National Laboratory

**Annual MSR Campaign Review Meeting April 2024** 

### **MSR Challenges**

- Liquid fuel
- Inert environment
- Radiation
- Aerosol formation
- Changing chemistry





### Why LIBS?

- Sensitivity across the periodic table
- Capable of remote measurements
- Rapid analysis
- Customizable to the application
- Can monitor solids, liquids, gases, and mixtures
- Elemental (occasionally isotopic) technique



JAAS

#### How can LIBS be used?

- Frozen salt analysis
  - As procured, purified, and post testing
- Investigating salt material interactions
  - Graphite, structural materials
- Online monitoring
  - In-situ salt analysis, off-gas monitoring
- Real-time isotopic composition





Wavelength (nm)





# The off-gas treatment system development is critical for continued MSR development



#### **MSR Off-gas streams can be monitored using LIBS**

Aerosol In



#### **LIBS can monitor isotopes relevant to MSRs**



**—··** 1:1

80

80

Calibration

Cross-validation

100

100



#### **Molten Salt Aerosol Test Stand (MSAT)**



### MSAT design permits a plethora of small-scale experiments



Example schematic of salt test capsule with:

(1)sparge gas line to bubble gases through salt,

(2) cover gas line to sweep salt gas interface,

(3) gas outlet to send stream to inline measurement systems,

(4) fluoride/chloride molten salt,

(5) vessel headspace,

(6) potential corrosion coupons or graphite samples.

#### Modeled emission spectra provide insight for tests



# These artificial spectra can be adjusted based on plasma temperature and density



# For the MSAT and looking beyond we are building a mobile LIBS cart





# Coupling LIBS with MOF for Xe breakthrough tests

Open Access Feature Paper Editor's Choice Article

Monitoring Xenon Capture in a Metal Organic Framework Using Laser-Induced Breakdown Spectroscopy

by Alexander J.\* 20, Praveen K. Thallapally 2 and Alexander J. Robinson 2

<sup>1</sup> Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA

<sup>2</sup> Pacific Northwest National Laboratory, Richland, WA 99352, USA



## **MOF Synthesized at PNNL**

- Identical PXRD confirmed (powder to pellet)
- No amorphous phase

Xe Adsorbed (mmol/g)

Reduced BET surface area





| Property                | Value              |
|-------------------------|--------------------|
| Pressed Pressure        | 2000 psi for 3 min |
| Size                    | 600 - 850          |
| <b>BET Surface area</b> | 15 m²/g            |
| BET Surface area, Po    | 120 m²/g           |



# New LIBS setup was needed to facilitate MOF size and flowrates





# Spectrometer gating and laser energy were optimized prior to data collection



### A multivariate model was built for Xe ranging from 1000 – 2500 ppm to estimate limits of detection for the given setup







### Breakthrough tests were completed on the activated MOF with the LIBS inline for noble gas tracking





# A new system optimized for gas LIBS is being developed for future MOF tests





- Mobile LIBS system being developed for enhanced involvement across MSR research
- MSAT undergoing final construction to enable small-scale salt transport and monitoring tests
- New gaseous LIBS system designed for enhanced noble gas quantification and MOF testing
- All of these efforts are focused around increasing LIBS usage for MSR research.

Tune in tomorrow to learn more about measuring isotopes via LIBS!







Molten Salt Reactor P R O G R A M

## Thank you

Hunter Andrews, and rewshb@ornl.gov

