

Molten Salt Reactor P R O G R A M

Thermochemical and Thermophysical Property Development for the Molten Salt Databases at LANL

Marisa Monreal

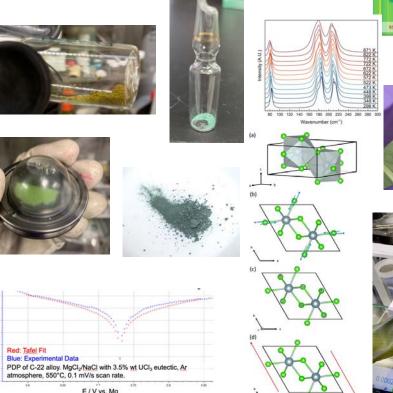
Inorganic, Isotope, and Actinide Chemistry – Chemistry Division

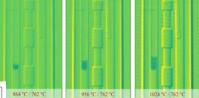
Los Alamos National Laboratory

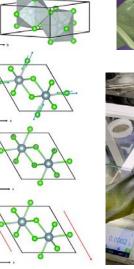
Annual MSR Campaign Review Meeting 16-18 April 2024

LA-UR-24-23405

LANL Actinide-Molten Salt Chemistry and Properties Research


(i)6


• Salt systems:


- Actinides: uranium, thorium, plutonium
- Chlorides; expanding to fluorides, beryllium

Research: •

- Chemistry & thermophysical properties
- Experiment and modeling
- Studies across length scales
- **Benefitting communities:** •
 - Pyroprocessing, nuclear energy, fundamental actinide science, global security/nonproliferation

U.S. DEPARTMENT OF

ENERG

Office of **NUCLEAR ENERGY**

2

LANL Actinide-Molten Salt Chemistry and **Properties Research** Scientists & Engineers

Researchers:

- Graduate students, post-docs, • scientists, and engineers
- Chemistry, materials science, earth ٠ and environmental science, theoretical

Collaborations:

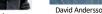
 National Laboratories, universities, industry, NEAMS, SciDAC, FUTURE **EFRC**

• Sponsors/Projects:

• MSR Campaign, LDRD, GAIN, **Technology Commercialization Fund** (TCF), IRP, NEUP

Matt Jackson Scott Parker David Andersson Alex Long Hongwu Xu Sven Vogel Karla Erickson Ping Yang Gaoxue Wang Sarah Hickam Harris Mason

Hakim Boulkhalfa Travis Carver Brendt Wohlberg


Post-docs & Students

Andrew Strzelecki* Charles Lhermitte* Hannah Patenaude Jarom Chamberlain Nicolas Capra Adam Altenhof Dylan Tharpe Eralie

Andrew Strzelecki

3

Office of **NUCLEAR ENERGY**

LANL Actinide-Molten Salt Chemistry and Properties Research

p	
Properties	Experimental Techniques
Density	Neutron Radiography, Conventional (Push-rod) Dilatometry
Viscosity	Dynamic Neutron Radiography, Rotational Viscometry
Melting Point/Phase Diagram, Heat Capacity	Differential Scanning Calorimetry (DSC)
Corrosion	Electrochemistry, Exposure Tests
Heat of Dissolution, Enthalpy of Mixing, Heat Capacity	Drop Calorimetry
Local Structure	Pair Distribution Function (PDF) Analysis, Raman Spectroscopy, Electrochemistry
Synthesis & Characterization	Inorganic halide synthesis, SEM, Melting Point (DSC), pXRD, SS-NMR Spectroscopy

• Experimental efforts & strategy:

- Method development, uncertainty reduction
- Lower <u>and</u> higher throughput methods
- Non-rad \rightarrow U, Th \rightarrow Pu
- Iterate with mod-sim
- Modeling and Simulation:
 - David Andersson, Ping Yang, Gaoxue Wang
 - Ab initio molecular dynamics (AIMD) simulations; density functional tight binding (DFTB) modeling, machine-learning-augmented DFTB parameterization (MLTB)

LANL MSR Campaign Work

1. PuCl₃-NaCl salts (FY22-present)

- Eutectic (36% PuCl₃ 64% NaCl)
- Ternary: PuCl₃ in UCl₃-NaCl eutectic (<10% PuCl₃)
 - **Density:** LANSCE neutron radiography method
 - Heat capacity (C_p): Drop calorimetry for integral C_p

2. Uranium-containing salts (FY24)

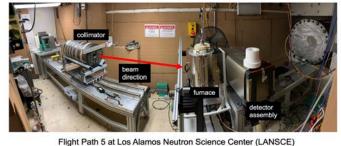
- Synthesis & characterization of uranium halides
 - UCl₃, UF₄; UF₃, UI₃
 - LiF-NaF-KF-UF₄ : ∆H_{fus}
- **UF₄**: C_p >350K to 1173K
- NaCl-MgCl₂-UCl₃: phase equilibria

Ted Besmann-

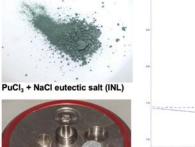
 recommended / MSTDB

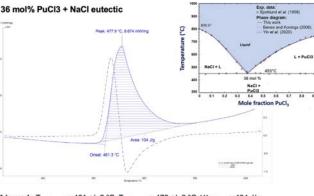
•

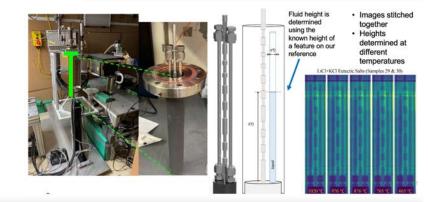
U.S. DEPARTMENT OF Office of NUCLEAR ENERGY


LANL MSR Campaign Work: PuCl₃-NaCl Salts

Density: LANSCE neutron radiography

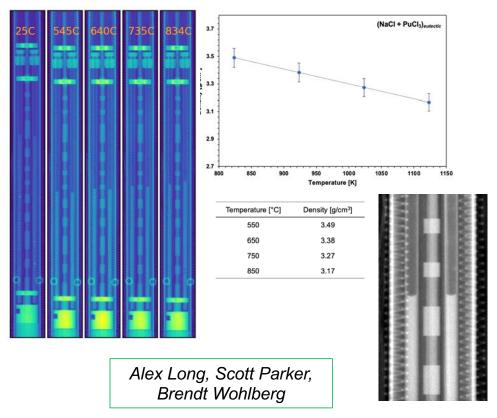



- ✓ Inter-lab collaboration: INL and LANL measured the same material: INL-synthesized PuCl₃-NaCl eutectic
 - INL Toni Karlsson: Shipped material to LANL: 10g shipped and introduced into glovebox line in the Plutonium Facility at LANL (PF-4)
- ✓ Upon receipt, material purity checked by melting point (DSC)



Sample Stage

This work: T_molt_onset = 461 +/- 2 °C, T_molt_peak = 478 +/- 2 °C ΔH_{fusion} = 104 J/g



U.S. DEPARTMENT OF Office of **ENERG NUCLEAR ENERGY**

6

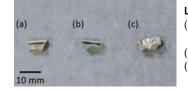
LANL MSR Campaign Work: PuCl₃-NaCl Salts

Density: LANSCE neutron radiography

- ✓ Density by neutron radiography measurements completed on a set of PuCl₃-NaCl and PuCl₃-UCl₃-NaCl samples; preliminary image analysis and density values generated
- Current work: Ensuring accuracy of volume measurement from images → Accounting for filled and void spaces
 - 1. Modeler working on volume estimation, including modeling bubbles/voids
 - Potential future applications: analysis of volatiles in salt, surface tension
 - 2. Analyzing change in relative contrast
 - Average column intensity, compare to full intensity, any differences thus equal voids

Current work: Next steps for the LANSCEmeasured samples

- 1. Post-mortem characterization (XRD)
- 2. If pure, re-constituting into new compositions, making new measurements (more density, drop cal)


LANL MSR Campaign Work: PuCl₃-NaCl Salts

Integral Heat Capacity (Cp): Drop Calorimetry

En route to integral C_p: with LDRD funding, a new methodology for ٠ measuring the ΔH_{mix} of molten salt systems was developed using Setaram AlexSYS-800 calorimeter.¹

Advantages/improvements:

- Elimination of problems from material-atmosphere interactions
- Minimal salt-crucible interactions
- No further mixing needed after being introduced into the calorimeter

- LiCI-KCI eutectic sample:
- (a) before the calorimetric
- measurement (b) after the measurement
- (c) after sectioning
- Recent results: PuCl₃-NaCl eutectic integral C_n
 - Used INL-synthesized material
 - Good match with INL-measured C_p (by DSC); publication forthcoming

Andrew Strzelecki (former LANL PD), Hongwu Xu

T = 1070 K 0.0 Duemmler et al. (2022) -0.5 T = 1000 K T = 1100 K -1.0 T = 1200 K T = 1300 K (Flom/CX) Hersh & Kleppa (1965) T = 1013 K **AH**mix -2.5 🛨 🛔 -3.0 -3.5 -4.0 -4.5 -5.0 0.2 0.4 0.6 0.8 0.0 1.0 LICI KCI Mole Fraction KCI

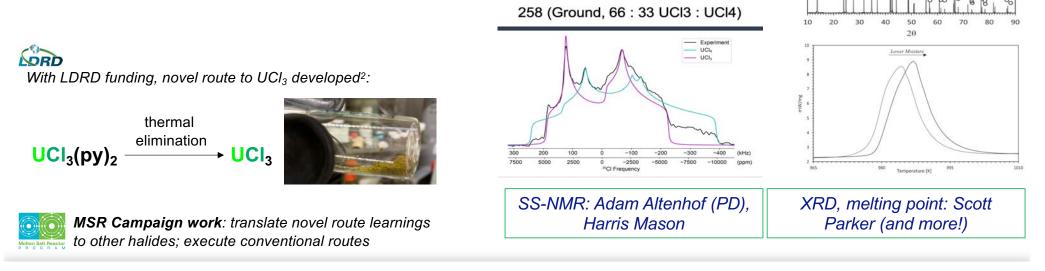
This Study

Comple	Temperature	Temperature	Experimental
Sample	Room (K)	Calorimeter (K)	ΔH _{mb} (kJ/mol)
0.251KCl – 0.749LiCl	297.48 ± 0.11	1070.39 ± 0.01	-3.04 ± 0.05
KCI-LiCI eutectic	297.73 ± 0.15	1070.51 ± 0.00	-3.52 ± 0.15
0.749KCl – 0.251 LiCl	297.62 ± 0.27	1070.41 ± 0.01	-2.83 ± 0.13

(1) Strzelecki, A., Cockreham, C., Parker, S., Mann, S., Lhermitte, C., Wu, D., Guo, X., Monreal, M. J., Jackson, J. M., Mitchell, J., Boukhalfa, H., Xu, H. "A New Methodology for Measuring the Enthalpies of Mixing of Molten Salts Using High Temperature Drop Calorimetry", Rev. Sci. Inst., 2024, 95, 014103.

8

0.5

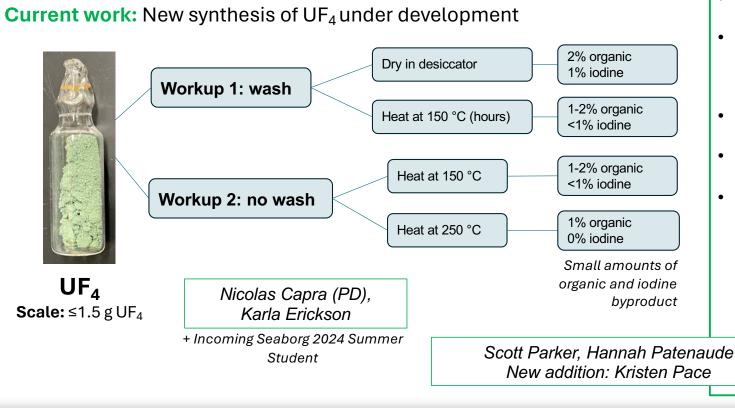


LANL MSR Campaign Work: Uranium-containing salts

Synthesis of Uranium Halides (chlorides, fluorides, iodide)

Current work: Synthesis of *pure, isolable* actinide chlorides and fluorides to enable property research

- Both conventional & novel synthetic routes
- Characterization techniques to confirm purity (e.g., SS-NMR; pXRD; DSC)
 - Impurities: other actinide species; water; products of rxn with water


(2) Erickson, K., Parker, S., Monreal, M. J. "Thermal Elimination of Pyridine from a Uranium Trichloride Precursor", 9 *Chem. Methods*, **2024**, e202300052. U.S. DEPARTMENT OF Office of NUCLEAR ENERGY

UCla

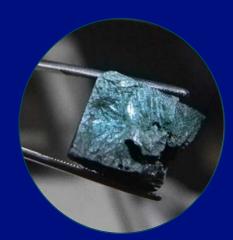
PDF 04-007-1687

LANL MSR Campaign Work: Uranium-containing salts

Synthesis of Uranium Halides (chlorides, fluorides, iodide)

Current work:

- Completing workup refinement, scale up
- Collecting characterization data
 ¹⁹F Solid-State NMR
 - Spectroscopy (first for UF₄!)
 - Others?
- Manuscript preparation: To be submitted by end of CY24
- Exploring other novel fluorination routes
- Next steps:
 - Synthetic efforts: UF₃, UI₃
 - Handoff to properties
 measurements
 - LiF-NaF-KF-UF₄: ΔH_{fus}
 - UF₄: Cp >350K to 1173K
 - NaCl-MgCl₂-UCl₃: phase equilibria


U.S. DEPARTMENT OF Office of NUCLEAR ENERGY

Looking Forward: Collaborations and Building the Pipeline

 Internal Collaborations: LANL-led SciDAC Scientific Discovery through Advanced Computing program to advance modeling behavior and properties of structural materials under molten salt conditions Nuclear Energy Advanced Modeling and Simulation (NEAMS)** 	 LANL-University Collaborations: University of Utah (Simpson) Electrochemistry, vapor pressure, student pipeline UC Berkeley (Scarlat, Fratoni) Molten salt round robin, fluoride & beryllium salt expertise, student pipeline, IRP MIT (Khaykovich) Pair distribution function analysis, new NEUP just announced! Oregon State University, Texas A&M, UNLV Student pipeline—viscosity, materials corrosion, electrochemistry 		
 LANL Civilian Nuclear Program Director: Chris Stanek** LANL-led EFRC: FUTURE Studying corrosion under irradiation 	Technical Work Scope Identifier No. IRP-NEAMS-1 Bridging the gap between experiments and modeling to improve the design of molten salt reactors Massimiliano Fratoni, Mark Asta, Peter Hosemann, Raluca Scarlat—University of		
 Upcoming 2024 presentations: MRS Spring Meeting Fall ACS Actinide Separations 	Izabela Szlufarska—University of Wisconsin-Madison Alexandra Navrotsky, Hongwu Xu—Arizona State University Marisa Monreal—Los Alamos National Laboratory Abdalla Abou Jaoude—Idaho National Laboratory Carolyn Burns, Thomas Hartmann—Pacific Northwest National Lab Nader Satvat—Kairos Power, LLC Karl Britsch—TerraPower, LLC	Redox potential, ionic speciation, and separation and recovery challenges from molten salts containing actinides and fission products	
Actinide SeparationsPlutonium FuturesMSR Workshop		PI: Boris Khaykovich (MIT) Collaborators: Stephen Lam (University of Massachusetts), David Sprouster (Stony Brook University), Anatoly Frenkel (Brookhaven National Laboratory) Marisa Monreal (Los Alamos National Laboratory), and Joanna McFarlane (Oak Ridge Nationa Laboratory)	

New Plutonium R&D Capability: Plutonium Science Laboratory ("PluS Lab")

PLUTONIUM CAPABILITY 1: Molecular chemistry & materials science ENVIRONMENT 1:

O₂- and H₂O-free

-- Gram-scale, non-irradiated materials --

PLUTONIUM CAPABILITY 2: Aqueous chemistry ENVIRONMENT 2: Water solutions

PLUTONIUM CAPABILITY 3: Molten salt science ENVIRONMENT 3: High-temperature (400 °C-900°C), O₂- and H₂O-free

Leadership Team: Marisa Monreal and Karla Erickson Sponsor: Nonproliferation Stewardship Program (NSP)

Acknowledgements

Scientists & Engineers

Ping Yang

Gaoxue Wang

Sarah Hickam

Harris Mason

Matt Jackson Scott Parker David Andersson Alex Long Hongwu Xu Sven Vogel Karla Erickson

Hakim Boulkhalfa Brendt Wohlberg Travis Carver

Post-docs & Students

Andrew Strzelecki* Charles Lhermitte* Hannah Patenaude Jarom Chamberlain Nicolas Capra Adam Altenhof Dylan Tharpe Eralie

University Collaborators, Visiting Students

University of Utah, MIT, UC Berkeley, OSU, UNLV, Texas Tech

Funding: Molten Salt Reactor Campaign

LANL Laboratory Directed Research and Development (LDRD) Directed Research Project #20210113DR

Gateway for Accelerated Innovation in Nuclear (GAIN) #NE-21-25117 with TerraPower

Technology Commercialization Fund (TCF) with Kairos Power

This work was performed, in part, at the Los Alamos Neutron Science Center (**LANSCE**), a NNSA User Facility operated for the U.S. Department of Energy (DOE) by Los Alamos National Laboratory (Contract 89233218CNA000001).

Thank you

Marisa Monreal mmonreal@lanl.gov

Office of NUCLEAR ENERGY