

Molten Salt Reactor

On-line Monitoring for MSR Off-Gas Treatment: Molecular Approach

Heather Felmy

Amanda Lines, Adan Schafer Medina, Sam Bryan PNNL

Annual MSR Campaign Review Meeting April 16-18 2024

PNNL-SA-196932

In-line and On-line Monitoring

Sensors directly in or on the process

In situ and real-time analysis of a given process or system

Fundamental characterization

Efficient process design

Safe and cost-effective deployment

Supporting scale up

Chemical Characterization: Optical Spectroscopy

- Provides chemical information
 - Identification and quantification
 - Oxidation state
 - Molecular and elemental species
- Highly mature technology
- Simplistic integration
- Robust and versatile

NUCLEAR ENERGY

The Two-Pronged Challenge: Monitoring Harsh and Complex Chemical Systems

- Sensor development
 - Overcoming COTS (commercial off the shelf) limitations to build sensors that can survive:
 - Highly corrosive systems
 - HF gas, molten salts
 - High temperature systems
 - Molten salts
 - Radiation
 - Improve sensitivity and limit of detection for low signal targets
 - Hydrogen isotopes: e.g. H₂, D₂, T₂
- Making smart sensors
 - Building autonomous tool kits that can accurately identify and quantify chemical targets using spectral data

Systems of Focus

- Building tools to support development and demonstration of off-gas treatment systems
 - Informed development
 - Better, faster, safer, and cost-effective deployment

Mcfarlane, J.; Ezell, N.; Del Cul, G.; Holcomb, D. E.; Myhre, K.; Chapel, A.; Lines, A.; Bryan, S.; Felmy, H. M.; Riley, B. *Fission Product Volatility and Off-Gas Systems for Molten Salt Reactors*; Oak Ridge National Lab.(ORNL), Oak Ridge, TN (United States): 2019.

Interlaboratory Collaboration

- Building and demonstrating applications throughout the treatment process
- Collaborating with additional teams to create comprehensive characterization/control strategies
- Aiming to provide key features such as mass balance

PNNL team

Atomic

ORNL team Hunter Andrews Joanna Mcfarlane Kevin Robb

FY24 Project Overview

- M3RD24PN0602041: Demonstrate application of optical monitoring tools for demonstration on gas stream
 - Due 9/30/24
 - Milestone is on schedule

• Progress to date:

- Designing and testing improved gas measurement cell
- Manuscript on hydrogen isotope measurements accepted by Analytical Chemistry
- Continued collaboration with ORNL to test sensors in salt loop
- Preparing for onsite demo at ORNL

Improving Gas Cell Design

- Past focus has been on using COTS sensors and instrumentation
- Demonstration on a wide range of key targets
 - Iodine species (gas and molten salt phases)
 - Hydrogen gas species (gas phase)

Felmy, H. M.; Clifford, A. J.; Medina, A. S.; Cox, R. M.; Wilson, J. M.; Lines, A. M.; Bryan, S. A., On-Line Monitoring of Gas-Phase Molecular lodine Using Raman and Fluorescence Spectroscopy Paired with Chemometric Analysis. *Environ Sci Technol* 2021, 55, 6, 3898–3908. Hughey, K. D.; Bradley, A. M.; Tonkyn, R. G.; Felmy, H. M.; Blake, T. A.; Bryan, S. A.; Johnson, T. J.; Lines, A. M., Absolute Band Intensity of the Iodine Monochloride Fundamental Mode for Infrared Sensing and Quantitative Analysis. *J Phys Chem A* 2020, 124 (46), 9578-9588.

Adan Schafer Medina, Heather M. Felmy,

Molly E. Vitale-Sullivan, Hope E. Lackey,

Shirmir D. Branch, Samuel A. Bryan, and

ACS Omega 2022 7 (44), 40456-40465. DOI: 10.1021/acsomega.2c05522

ACS Publications

Amanda M. Lines

Probe Details

- Typically, Raman spectroscopy relies on 180° backscatter
- Measurement of molecular, polyatomic species including several key targets in the gas phase

Improving Gas Cell Design

- First gas cell design consisted of optical window on gas line
- Application to hydrogen isotopes

 New gas cell design combines signal from 4 collection ports

Excitation • New gas cell design Excitation combines signal from 4 collection ports

Excitation Collection Collection • New gas cell design Excitation combines signal from 4 collection ports

- Tested the new gas cell on standards to compare sensitivity
- Integration of summer student Alyssa Espley (now post-bachelor) into experimental work

- Testing sensitivity
 - 3x higher signal with new gas cell
- Tie into building smart sensors
- Chemometric modeling
- Real-time and autonomous analysis of complex data

Application to Hydrogen Isotopes

- Manuscript:
 - H₂ and D₂ Raman measurements across multiple systems
 - Multiple gas cells tested
 - 3 excitation wavelengths (405, 532, 671 nm)
 - Application of chemometric models to multiple systems
 - Different gas cells and instrumentation
 - Accepted for publication in Analytical Chemistry

Application to Hydrogen Isotopes

- Complex spectral data encountered
 - Differences in measurement cells used
 - Raman probe alignment
 - Integration time differences
 - Instruments used
- Different instrumentation required calibration transfer
 - Axis alignment
 - Accounting for detector differences

Application to Hydrogen Isotopes

- Chemometric models collected on one system applied to other systems
 - Spectral preprocessing required, included normalization and application of a 1st derivative
- Successfully applied models collected on first gas cell design to new cell
 - Quantification of H₂ and D₂

Application to Hydrogen Isotopes

- Application to gas mixing
 - Continuous data collection
 - Model predicted gas composition
- Models can be applied in real time
 - Can predict concentrations or gas pressures for multiple analytes simultaneously

Highlights on Impacts and Advancements

Paper accepted

 Felmy, H. M.; Cox, R. M.; Espley, A. F.; Campbell, E. L.; Kersten, B. E.; Lackey, H. E.; Branch, S. D.; Bryan, S. A.; Lines, A. M. Quantification of hydrogen isotopes utilizing Raman spectroscopy paired with chemometric analysis for application across multiple systems. Analytical Chemistry 2024, Accepted April 10th, 2024.

→With journal cover graphic

 New Raman instrument on order with vendor to further improve sensitivities for gas phase species

Testing Probe Materials in LSTL

 Ongoing testing of materials performance when exposed to conditions within the LSTL (liquid salt test loop)

 Big thank you to ORNL team

Testing Probe Materials in LSTL

Before incorporation into salt loop

Salt loop testing

- Probe barrel Swaged into loop
- No visual degradation after testing

1st Probe Tested

After incorporation into salt loop

Testing Probe Materials in LSTL

- Visually, probe appears in excellent condition after exposure in LSTL
- Raman data suggests comparable signal after incorporation into loop
- Minimal materials degradation/impacts to performance

Testing Probe Materials in LSTL

2nd Probe

Cap

- Salt loop testing
 - Probe barrel Swaged into loop
 - Corrosion and heat damage visible on exterior of probe
 - No significant impact to probe performance

Probe Barrel

Preparing for Onsite Demo at ORNL

- Instrument on order
 - 405 nm excitation
 - Improved detector design
 - Multitrack
 - Allows for multiple simultaneous measurement locations
 - Compatible with new gas cell design
 - \rightarrow Improve sensitivity
- Documentation examples
 - EPR (Electronic Prep and Risk)
 - ORMP (Off-site Risk Management Plan)
 - SME (Subject Matter Expert) sign off on instrumentation
 - Lab Assist activity (PNNL safety documentation)

Highlights

• Presentations

• ACS NORM June 28-30

• Publications

 Felmy, H. M.; Cox, R. M.; Espley, A. F.; Campbell, E. L.; Kersten, B. E.; Lackey, H. E.; Branch, S. D.; Bryan, S. A.; Lines, A. M. Quantification of hydrogen isotopes utilizing Raman spectroscopy paired with chemometric analysis for application across multiple systems. Analytical Chemistry 2024, Accepted April 10th, 2024.

Student involvement

- Bethany Kersten: PhD intern, now post-doc at ANL
- Alyssa Espley: SULI student, now post bachelors

• Sensors and instrumentation tailored to off-gas targets

- Successful testing of redesigned gas cell to H₂, D₂, N₂, and O₂
 - Improved sensitivity over original cell design
- Procurement of new Raman instrument
- Hydrogen isotope journal manuscript accepted for publication
 - Demonstration of calibration transfer method to multiple cell designs and instrumentation

• Characterization of Raman probes integrated into LSTL

- Probes survived harsh conditions of salt loop
 - No significant change in probe performance

Continuing to prepare for on-site demo at ORNL

Conclusions

• On-line monitoring is a powerful tool that can support:

- More efficient design and testing of chemical processes
 - e.g., off-gas treatment
- Informed transitions during scale up
- Safer, optimized, and affordable deployment of processes

• Optical sensors can provide complex chemical information

• PNNL is collaborating with other labs to build comprehensive tool kits

Future Opportunities

- Testing of new instrumentation
- Full demo of Raman monitoring within ORNL salt loop
- Building and integrating on-line monitoring tools to support other aspects of gas treatment
 - e.g., Gas capture with MOFS

Acknowledgements

PNNL Team:

Amanda Lines Sam Bryan Heather Felmy Shirmir Branch Hope Lackey Adan Schafer Medina Richard Cox Emily Campbell Brian Riley

ORNL Team:

Joanna Mcfarlane Hunter Andrews Kevin Robb

Students/visiting faculty/guests:

Prof. Gilbert Nelson (C. Idaho)Molly Vitale-Sullivan (SULI)Job Bello (Spectra Solutions Inc.)Andrew CliffordAlyssa EspleyBethany Kersten

U.S. DOE NE

Thank you

Email Address: heather.felmy@pnnl.gov

Office of **NUCLEAR ENERGY**